Review
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 2, 182 - 189, 27.05.2021
https://doi.org/10.30621/jbachs.854258

Abstract

References

  • 1. Singh J, Garg A. Ancient DNA analysis and its probable applications in forensic anthropology. J Punjab Acad Forensic Med Toxicol. 2014;14(1):43–50.
  • 1. Singh J, Garg A. Ancient DNA analysis and its probable applications in forensic anthropology. J Punjab Acad Forensic Med Toxicol. 2014;14(1):43–50.
  • 2. Tekeli E, Elma C. Antropoloji̇k kemi̇k örnekleri̇nden anti̇k dna çalişmalari. 2016;32(Aralık).
  • 2. Tekeli E, Elma C. Antropoloji̇k kemi̇k örnekleri̇nden anti̇k dna çalişmalari. 2016;32(Aralık).
  • 3. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312(5991):282–4.
  • 3. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312(5991):282–4.
  • 4. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.
  • 4. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.
  • 5. Hagelberg E, Hofreiter M, Keyser C. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130371.
  • 5. Hagelberg E, Hofreiter M, Keyser C. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130371.
  • 6. Goffeau A, Barrell G, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science (80- ). 1996;274(5287):546–67.
  • 6. Goffeau A, Barrell G, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science (80- ). 1996;274(5287):546–67.
  • 7. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;09(03).
  • 7. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;09(03).
  • 8. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499(7456):74–8.
  • 8. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499(7456):74–8.
  • 9. Li R. FORENSIC BIOLOGY. 2nd ed. CRC Press; 2015. 567 p.
  • 9. Li R. FORENSIC BIOLOGY. 2nd ed. CRC Press; 2015. 567 p.
  • 10. Elkins KM. Forensic DNA Biology : a Laboratory Manual, Chapter 4. Elsevier; 2012. 39-52 p.
  • 10. Elkins KM. Forensic DNA Biology : a Laboratory Manual, Chapter 4. Elsevier; 2012. 39-52 p.
  • 11. Dabney J, Knapp M, Glocke I, Gansauge M, Weihmann A, Nickel B. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. 2013;110(39).
  • 11. Dabney J, Knapp M, Glocke I, Gansauge M, Weihmann A, Nickel B. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. 2013;110(39).
  • 12. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. 2014;
  • 12. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. 2014;
  • 13. Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. 2018;
  • 13. Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. 2018;
  • 14. Rasmussen S, Allentoft ME, Nielsen K, Nielsen R, Kristiansen K, Willerslev E. Early Divergent Strains of Yersinia pestis in Eurasia Article Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. 2015;163:571–82.
  • 14. Rasmussen S, Allentoft ME, Nielsen K, Nielsen R, Kristiansen K, Willerslev E. Early Divergent Strains of Yersinia pestis in Eurasia Article Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. 2015;163:571–82.
  • 15. Spyrou MA, Tukhbatova RI, Wang CC, Valtueña AA, Lankapalli AK, Kondrashin V V., et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat Commun. 2018;9(1):1–10.
  • 15. Spyrou MA, Tukhbatova RI, Wang CC, Valtueña AA, Lankapalli AK, Kondrashin V V., et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat Commun. 2018;9(1):1–10.
  • 16. Dobney K. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. 2017;(March).
  • 16. Dobney K. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. 2017;(March).
  • 17. Schlott T, Eiffert H, Schmidt-Schultz T, Gebhardt M, Parzinger H, Schultz M. Detection and analysis of cancer genes amplified from bone material of a Scythian royal burial in Arzhan near Tuva, Siberia. Anticancer Res. 2007;27(6 B):4117–9.
  • 17. Schlott T, Eiffert H, Schmidt-Schultz T, Gebhardt M, Parzinger H, Schultz M. Detection and analysis of cancer genes amplified from bone material of a Scythian royal burial in Arzhan near Tuva, Siberia. Anticancer Res. 2007;27(6 B):4117–9.
  • 18. Cisneros L, Bussey KJ, Orr AJ, Miočević M, Lineweaver CH, Davies P. Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS One. 2017;12(4):1–22.
  • 18. Cisneros L, Bussey KJ, Orr AJ, Miočević M, Lineweaver CH, Davies P. Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS One. 2017;12(4):1–22.
  • 19. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 2012;3. 20. Rollo F, Ubaldi M, Ermini L, Marota I. Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci. 2002;99(20):12594–9.
  • 19. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 2012;3. 20. Rollo F, Ubaldi M, Ermini L, Marota I. Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci. 2002;99(20):12594–9.
  • 21. Berens AJ, Cooper TL, Lachance J. The genomic health of ancient hominins. 2017;1–34.
  • 21. Berens AJ, Cooper TL, Lachance J. The genomic health of ancient hominins. 2017;1–34.
  • 22. Pilli E, Fox CL, Capelli C, Lari M, Sampietro L, Gigli E, et al. Ancient DNA and forensics genetics: The case of Francesco Petrarca. Forensic Sci Int Genet Suppl Ser. 2008;1(1):469–70.
  • 22. Pilli E, Fox CL, Capelli C, Lari M, Sampietro L, Gigli E, et al. Ancient DNA and forensics genetics: The case of Francesco Petrarca. Forensic Sci Int Genet Suppl Ser. 2008;1(1):469–70.
  • 23. Rizzi E, Lari M, Gigli E, Bellis G De, Caramelli D. Ancient DNA studies : new perspectives on old samples. 2012;1–19.
  • 23. Rizzi E, Lari M, Gigli E, Bellis G De, Caramelli D. Ancient DNA studies : new perspectives on old samples. 2012;1–19.
  • 24. Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. 2010;47(December):383–7.
  • 24. Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. 2010;47(December):383–7.
  • 25. Le Bihan Y-V, Izquierdo MA, Coste F, Aller P, Culard F, Gehrke TH, et al. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. 2011;39(14):6277–90.
  • 25. Le Bihan Y-V, Izquierdo MA, Coste F, Aller P, Culard F, Gehrke TH, et al. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. 2011;39(14):6277–90.
  • 26. Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S. DNA damage and DNA sequence retrieval from ancient tissues. 1996;24(7):1304–7.
  • 26. Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S. DNA damage and DNA sequence retrieval from ancient tissues. 1996;24(7):1304–7.
  • 27. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. 2004;
  • 27. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. 2004;
  • 28. Pääbo S. Ancient DNA : Extraction, characterization, molecular cloning, and enzymatic amplification. 1989;86(March):1939–43.
  • 28. Pääbo S. Ancient DNA : Extraction, characterization, molecular cloning, and enzymatic amplification. 1989;86(March):1939–43.
  • 29. Lindahl T, Andersson A. Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3618–23. 30. Lindahl T, Nyberg B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3610–8.
  • 29. Lindahl T, Andersson A. Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3618–23. 30. Lindahl T, Nyberg B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3610–8.
  • 31. Morikawa K. DNA repair enzymes. Curr Opin Struct Biol. 1993;3(1):17–23.
  • 31. Morikawa K. DNA repair enzymes. Curr Opin Struct Biol. 1993;3(1):17–23.
  • 32. Chatterjee N, Walker GC. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ Mol Mutagen [Internet]. 2017;58:235–63. Available from: http://dx.doi.org/10.1002/em.20575
  • 32. Chatterjee N, Walker GC. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ Mol Mutagen [Internet]. 2017;58:235–63. Available from: http://dx.doi.org/10.1002/em.20575
  • 33. Hedges REM. Bone diagenesis: An overview of processes. Archaeometry. 2002;44(3):319–28.
  • 33. Hedges REM. Bone diagenesis: An overview of processes. Archaeometry. 2002;44(3):319–28.
  • 34. Yang DY, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32(3):331–6.
  • 34. Yang DY, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32(3):331–6.
  • 35. Bollongino R, Vigne JD. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. J Archaeol Sci. 2008;35(4):873–81.
  • 35. Bollongino R, Vigne JD. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. J Archaeol Sci. 2008;35(4):873–81.
  • 36. Daskalaki E. Archaeological Genetics - Approaching Human History through DNA Analysis [Internet]. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology ; 1101. 2014. 61 p. Available from: http://www.dart-europe.eu/full.php?id=868324
  • 36. Daskalaki E. Archaeological Genetics - Approaching Human History through DNA Analysis [Internet]. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology ; 1101. 2014. 61 p. Available from: http://www.dart-europe.eu/full.php?id=868324
  • 37. Stephan E. Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica. 1997;25–26(“Actes du 7ème Colloque international d’Archéozoologie”):173–80.
  • 37. Stephan E. Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica. 1997;25–26(“Actes du 7ème Colloque international d’Archéozoologie”):173–80.
  • 38. Cooper A. Ancient DNA: Do It Right or Not at All. Science (80- ). 2000;289(5482):1139b–1139.
  • 38. Cooper A. Ancient DNA: Do It Right or Not at All. Science (80- ). 2000;289(5482):1139b–1139.
  • 39. Akiş I. Antik DNA Çalışmaları ve Türkiye. J Cell Mol Biol. 2014;12(1–2):1–9.
  • 39. Akiş I. Antik DNA Çalışmaları ve Türkiye. J Cell Mol Biol. 2014;12(1–2):1–9.

Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences

Year 2021, Volume: 5 Issue: 2, 182 - 189, 27.05.2021
https://doi.org/10.30621/jbachs.854258

Abstract

Life gave rise on our planet 3-4 billion years ago and since then, living organisms (from one cell to multicellular organisms) have undergone many genetic, phenotypic and communal changes. Scientists have been able to shed light on only a small part of this evolutionary process, but with the development of new techniques our knowledge is expanding day by day. For the past 30 years ancient DNA studies have aided us in understanding the molecular basis of the changes observed in living organisms. Ancient DNA (aDNA) is the genetic material obtained from biological remains (bones, teeth, plant seeds, etc.) acquired from archaeological and paleontological excavations. In the present review, molecular studies carried out to date, contributions of ancient DNA to medical sciences, as well as basic problems encountered in obtaining and using aDNA have been discussed.

References

  • 1. Singh J, Garg A. Ancient DNA analysis and its probable applications in forensic anthropology. J Punjab Acad Forensic Med Toxicol. 2014;14(1):43–50.
  • 1. Singh J, Garg A. Ancient DNA analysis and its probable applications in forensic anthropology. J Punjab Acad Forensic Med Toxicol. 2014;14(1):43–50.
  • 2. Tekeli E, Elma C. Antropoloji̇k kemi̇k örnekleri̇nden anti̇k dna çalişmalari. 2016;32(Aralık).
  • 2. Tekeli E, Elma C. Antropoloji̇k kemi̇k örnekleri̇nden anti̇k dna çalişmalari. 2016;32(Aralık).
  • 3. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312(5991):282–4.
  • 3. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312(5991):282–4.
  • 4. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.
  • 4. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.
  • 5. Hagelberg E, Hofreiter M, Keyser C. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130371.
  • 5. Hagelberg E, Hofreiter M, Keyser C. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130371.
  • 6. Goffeau A, Barrell G, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science (80- ). 1996;274(5287):546–67.
  • 6. Goffeau A, Barrell G, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science (80- ). 1996;274(5287):546–67.
  • 7. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;09(03).
  • 7. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;09(03).
  • 8. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499(7456):74–8.
  • 8. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499(7456):74–8.
  • 9. Li R. FORENSIC BIOLOGY. 2nd ed. CRC Press; 2015. 567 p.
  • 9. Li R. FORENSIC BIOLOGY. 2nd ed. CRC Press; 2015. 567 p.
  • 10. Elkins KM. Forensic DNA Biology : a Laboratory Manual, Chapter 4. Elsevier; 2012. 39-52 p.
  • 10. Elkins KM. Forensic DNA Biology : a Laboratory Manual, Chapter 4. Elsevier; 2012. 39-52 p.
  • 11. Dabney J, Knapp M, Glocke I, Gansauge M, Weihmann A, Nickel B. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. 2013;110(39).
  • 11. Dabney J, Knapp M, Glocke I, Gansauge M, Weihmann A, Nickel B. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. 2013;110(39).
  • 12. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. 2014;
  • 12. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. 2014;
  • 13. Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. 2018;
  • 13. Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. 2018;
  • 14. Rasmussen S, Allentoft ME, Nielsen K, Nielsen R, Kristiansen K, Willerslev E. Early Divergent Strains of Yersinia pestis in Eurasia Article Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. 2015;163:571–82.
  • 14. Rasmussen S, Allentoft ME, Nielsen K, Nielsen R, Kristiansen K, Willerslev E. Early Divergent Strains of Yersinia pestis in Eurasia Article Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. 2015;163:571–82.
  • 15. Spyrou MA, Tukhbatova RI, Wang CC, Valtueña AA, Lankapalli AK, Kondrashin V V., et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat Commun. 2018;9(1):1–10.
  • 15. Spyrou MA, Tukhbatova RI, Wang CC, Valtueña AA, Lankapalli AK, Kondrashin V V., et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat Commun. 2018;9(1):1–10.
  • 16. Dobney K. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. 2017;(March).
  • 16. Dobney K. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. 2017;(March).
  • 17. Schlott T, Eiffert H, Schmidt-Schultz T, Gebhardt M, Parzinger H, Schultz M. Detection and analysis of cancer genes amplified from bone material of a Scythian royal burial in Arzhan near Tuva, Siberia. Anticancer Res. 2007;27(6 B):4117–9.
  • 17. Schlott T, Eiffert H, Schmidt-Schultz T, Gebhardt M, Parzinger H, Schultz M. Detection and analysis of cancer genes amplified from bone material of a Scythian royal burial in Arzhan near Tuva, Siberia. Anticancer Res. 2007;27(6 B):4117–9.
  • 18. Cisneros L, Bussey KJ, Orr AJ, Miočević M, Lineweaver CH, Davies P. Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS One. 2017;12(4):1–22.
  • 18. Cisneros L, Bussey KJ, Orr AJ, Miočević M, Lineweaver CH, Davies P. Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS One. 2017;12(4):1–22.
  • 19. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 2012;3. 20. Rollo F, Ubaldi M, Ermini L, Marota I. Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci. 2002;99(20):12594–9.
  • 19. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 2012;3. 20. Rollo F, Ubaldi M, Ermini L, Marota I. Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci. 2002;99(20):12594–9.
  • 21. Berens AJ, Cooper TL, Lachance J. The genomic health of ancient hominins. 2017;1–34.
  • 21. Berens AJ, Cooper TL, Lachance J. The genomic health of ancient hominins. 2017;1–34.
  • 22. Pilli E, Fox CL, Capelli C, Lari M, Sampietro L, Gigli E, et al. Ancient DNA and forensics genetics: The case of Francesco Petrarca. Forensic Sci Int Genet Suppl Ser. 2008;1(1):469–70.
  • 22. Pilli E, Fox CL, Capelli C, Lari M, Sampietro L, Gigli E, et al. Ancient DNA and forensics genetics: The case of Francesco Petrarca. Forensic Sci Int Genet Suppl Ser. 2008;1(1):469–70.
  • 23. Rizzi E, Lari M, Gigli E, Bellis G De, Caramelli D. Ancient DNA studies : new perspectives on old samples. 2012;1–19.
  • 23. Rizzi E, Lari M, Gigli E, Bellis G De, Caramelli D. Ancient DNA studies : new perspectives on old samples. 2012;1–19.
  • 24. Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. 2010;47(December):383–7.
  • 24. Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. 2010;47(December):383–7.
  • 25. Le Bihan Y-V, Izquierdo MA, Coste F, Aller P, Culard F, Gehrke TH, et al. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. 2011;39(14):6277–90.
  • 25. Le Bihan Y-V, Izquierdo MA, Coste F, Aller P, Culard F, Gehrke TH, et al. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. 2011;39(14):6277–90.
  • 26. Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S. DNA damage and DNA sequence retrieval from ancient tissues. 1996;24(7):1304–7.
  • 26. Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S. DNA damage and DNA sequence retrieval from ancient tissues. 1996;24(7):1304–7.
  • 27. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. 2004;
  • 27. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. 2004;
  • 28. Pääbo S. Ancient DNA : Extraction, characterization, molecular cloning, and enzymatic amplification. 1989;86(March):1939–43.
  • 28. Pääbo S. Ancient DNA : Extraction, characterization, molecular cloning, and enzymatic amplification. 1989;86(March):1939–43.
  • 29. Lindahl T, Andersson A. Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3618–23. 30. Lindahl T, Nyberg B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3610–8.
  • 29. Lindahl T, Andersson A. Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3618–23. 30. Lindahl T, Nyberg B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972;11(19):3610–8.
  • 31. Morikawa K. DNA repair enzymes. Curr Opin Struct Biol. 1993;3(1):17–23.
  • 31. Morikawa K. DNA repair enzymes. Curr Opin Struct Biol. 1993;3(1):17–23.
  • 32. Chatterjee N, Walker GC. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ Mol Mutagen [Internet]. 2017;58:235–63. Available from: http://dx.doi.org/10.1002/em.20575
  • 32. Chatterjee N, Walker GC. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ Mol Mutagen [Internet]. 2017;58:235–63. Available from: http://dx.doi.org/10.1002/em.20575
  • 33. Hedges REM. Bone diagenesis: An overview of processes. Archaeometry. 2002;44(3):319–28.
  • 33. Hedges REM. Bone diagenesis: An overview of processes. Archaeometry. 2002;44(3):319–28.
  • 34. Yang DY, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32(3):331–6.
  • 34. Yang DY, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32(3):331–6.
  • 35. Bollongino R, Vigne JD. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. J Archaeol Sci. 2008;35(4):873–81.
  • 35. Bollongino R, Vigne JD. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. J Archaeol Sci. 2008;35(4):873–81.
  • 36. Daskalaki E. Archaeological Genetics - Approaching Human History through DNA Analysis [Internet]. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology ; 1101. 2014. 61 p. Available from: http://www.dart-europe.eu/full.php?id=868324
  • 36. Daskalaki E. Archaeological Genetics - Approaching Human History through DNA Analysis [Internet]. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology ; 1101. 2014. 61 p. Available from: http://www.dart-europe.eu/full.php?id=868324
  • 37. Stephan E. Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica. 1997;25–26(“Actes du 7ème Colloque international d’Archéozoologie”):173–80.
  • 37. Stephan E. Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica. 1997;25–26(“Actes du 7ème Colloque international d’Archéozoologie”):173–80.
  • 38. Cooper A. Ancient DNA: Do It Right or Not at All. Science (80- ). 2000;289(5482):1139b–1139.
  • 38. Cooper A. Ancient DNA: Do It Right or Not at All. Science (80- ). 2000;289(5482):1139b–1139.
  • 39. Akiş I. Antik DNA Çalışmaları ve Türkiye. J Cell Mol Biol. 2014;12(1–2):1–9.
  • 39. Akiş I. Antik DNA Çalışmaları ve Türkiye. J Cell Mol Biol. 2014;12(1–2):1–9.
There are 74 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Özge Uysal Yoca

Hande Efe This is me 0000-0002-3128-0047

Zeynep Yüce This is me 0000-0002-2762-0942

Publication Date May 27, 2021
Submission Date January 8, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Uysal Yoca, Ö., Efe, H., & Yüce, Z. (2021). Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. Journal of Basic and Clinical Health Sciences, 5(2), 182-189. https://doi.org/10.30621/jbachs.854258
AMA Uysal Yoca Ö, Efe H, Yüce Z. Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. JBACHS. May 2021;5(2):182-189. doi:10.30621/jbachs.854258
Chicago Uysal Yoca, Özge, Hande Efe, and Zeynep Yüce. “Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences”. Journal of Basic and Clinical Health Sciences 5, no. 2 (May 2021): 182-89. https://doi.org/10.30621/jbachs.854258.
EndNote Uysal Yoca Ö, Efe H, Yüce Z (May 1, 2021) Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. Journal of Basic and Clinical Health Sciences 5 2 182–189.
IEEE Ö. Uysal Yoca, H. Efe, and Z. Yüce, “Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences”, JBACHS, vol. 5, no. 2, pp. 182–189, 2021, doi: 10.30621/jbachs.854258.
ISNAD Uysal Yoca, Özge et al. “Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences”. Journal of Basic and Clinical Health Sciences 5/2 (May 2021), 182-189. https://doi.org/10.30621/jbachs.854258.
JAMA Uysal Yoca Ö, Efe H, Yüce Z. Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. JBACHS. 2021;5:182–189.
MLA Uysal Yoca, Özge et al. “Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences”. Journal of Basic and Clinical Health Sciences, vol. 5, no. 2, 2021, pp. 182-9, doi:10.30621/jbachs.854258.
Vancouver Uysal Yoca Ö, Efe H, Yüce Z. Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. JBACHS. 2021;5(2):182-9.