Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 3, 884 - 890, 29.09.2022
https://doi.org/10.30621/jbachs.1089447

Abstract

Supporting Institution

Destekleyen kurum yoktur.

Project Number

Bir projenin parçası değildir, finansal destek yoktur.

References

  • (1) Canbaz Öztürk B. Investigation of natural radioactivity levels in West Anatolia granite plutons with multivariate statistical analysis methods (PhD Thesis). Ege Univ. 2015.
  • (2) Günay O, Aközcan S, Kulalı F. Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul. Arab. J. Geosci. 2019; 12:171. doi:10.1007/s12517-019-4344-x.
  • (3) Günay O, Saç MM, İçhedef M, Taşköprü C. Soil gas radon concentrations along the Ganos Fault (GF). Arab. J. Geosci. 2018; 11:1–5. doi:10.1007/s12517-018-3542-2.
  • (4) Karadeniz Ö, Çıyrak N, Yaprak G, Akal C. Terrestrial gamma exposure in the granodiorite area of Bergama (Pergamon)–Kozak, Turkey. J. Radioanal. Nucl. Chem. 2011; 288:919–926. doi:10.1007/s10967-011-1031-0.
  • (5) Saad AF, Al-Awami HH, Hussein NA. Radon exhalation from building materials used in Libya, Radiat. Phys. Chem. 2014; 101:15–19. doi:10.1016/j.radphyschem.2014.03.030.
  • (6) Sabbarese C, Ambrosino F, D’Onofrio A, Roca V. Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr. Build. Mater. 2021; 268:121087. doi:10.1016/j.conbuildmat.2020.121087.
  • (7) Kreuzer M, McLaughlin J. Radon. In: WHO Guidel. Indoor Air Qual. Sel. Pollut. Geneva: World Health Organization. 2010. p.347–369. doi:10.1016/B978-0-12-384947-2.00550-X.
  • (8) Özbay T, Karadeniz Ö, Vupa Çilengiroğlu Ö, Durak H, Eser S. A Comparative study on indoor radon levels between the lung cancer and cancer free groups in Izmir Province, Turkey. J. Basic Clin. Heal. Sci. 2021; 3:16–22. doi:10.30621/jbachs.873114.
  • (9) Çam NF, Özken İ, Yaprak G. A survey of natural radiation levels in soils and rocks from Aliağa-Foça Region in Izmir, Turkey. Radiat. Prot. Dosimetry. 2013; 155:169–180. doi:10.1093/rpd/ncs318.
  • (10) Karadeniz Ö, Yaprak G, Akal C, Emen İ. Indoor radon measurements in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. Radiat. Prot. Dosimetry. 2012; 149:147–154. doi:10.1093/rpd/ncr222.
  • (11) Özbay T, Karadeniz Ö. Indoor radon measurement in Izmir Province, Turkey. Int. J. Environ. Anal. Chem. 2016; 96:752–762. doi:10.1080/03067319.2016.1196684.
  • (12) Gupta M, Mahur AK, Varshney R, Sonkawade RG, Verma KD, Prasad R. Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Radiat. Meas. 2013; 50:160–165. doi:10.1016/j.radmeas.2012.03.015.
  • (13) Hatungimana D, Taşköprü C, İçhedef M, Saç MM, Yazıcı Ş. Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. J. Build. Eng. 2019; 23:369–376. doi:10.1016/j.jobe.2019.01.011.
  • (14) United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR Annex B: Exposures from natural radiation sources. United Nations, New York. 2000.
  • (15) Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S. Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J. Geochemical Explor. 2018; 184:304–310. doi:10.1016/j.gexplo.2017.05.002.
  • (16) UNSCEAR Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.1993.
  • (17) International Commission on Radiological Protection (ICRP). ICRP Publication 126: Radiological protection against radon exposure. Ann. 2014; 43(3).
  • (18) World Health Organization WHO. Handbook on Indoor Radon a Public Health Perspective. France. 2009.
  • (19) Official Gazette. Number: 23999. Radiation Safety Regulation, 2000.
  • (20) Sakoda A, Nishiyama Y, Hanamoto K, et al. Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl. Radiat. Isot. 2010; 68:1180–1184. doi:10.1016/j.apradiso.2009.12.036.
  • (21) Yousef HA, Saleh GM, El-Farrash AH, Hamza A. Radon exhalation rate for phosphate rocks samples using alpha track detectors. J. Radiat. Res. Appl. Sci. 2016; 9:41–46. doi:10.1016/j.jrras.2015.09.002.
  • (22) Singh H, Singh J, Singh S, Bajwa BS. Radon exhalation rate and uranium estimation study of some soil and rock samples from Tusham ring complex, India using SSNTD technique. Radiat. Meas. 2008; 43:459–462. doi:10.1016/j.radmeas.2008.04.060.
  • (23) Kumar A, Sharma S, Mehra R, Mishra R, Taloor AK, Bhattacharya P. Assessment of natural radioactivity levels in the Lesser Himalayas of the Jammu and Kashmir, India. J. Radioanal. Nucl. Chem. 2022. doi:10.1007/s10967-021-08164-2.

Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure

Year 2022, Volume: 6 Issue: 3, 884 - 890, 29.09.2022
https://doi.org/10.30621/jbachs.1089447

Abstract

Purpose: Radon (222Rn) and its decay products clinging to airborne particles settle in the lungs when inhaled and can lead to lung cancer. The main source of 222Rn is rocks and soil in the Earth's crust and causes indoor radon exposure when local geological material is used as a building material. Accordingly, the primary objective of the study is to determine the radon activity concentrations (CRn) and exhalation rates (EA and EM) from different rock types taken from the Aliağa-İzmir region. The study also estimates the annual effective dose (AED) and the excess lifetime cancer risk (ELCR).

Material and Methods: For the measurement of the CRn, EA, and EM in different rock types, the can technique with LR-115 detector was utilized. The AED and the ELCR were estimated using the CRn in the samples.

Results: It was found that the CRn, EA, EM, AED, and ELCR values for the examined rock samples were ranged between 66±4 and 1711±13 Bq m−3, 51±3 and 1309±10 mBq m-2 h-1, 2.68±0.18 and 64.02±0.47 mBq kg-1 h-1, 1.67 and 43.16 mSv y−1, and 0.006 and 0.151, respectively.

Conclusion: The higher radiological risks in terms of radon exposure were related to the rocks of volcanic origin.

Project Number

Bir projenin parçası değildir, finansal destek yoktur.

References

  • (1) Canbaz Öztürk B. Investigation of natural radioactivity levels in West Anatolia granite plutons with multivariate statistical analysis methods (PhD Thesis). Ege Univ. 2015.
  • (2) Günay O, Aközcan S, Kulalı F. Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul. Arab. J. Geosci. 2019; 12:171. doi:10.1007/s12517-019-4344-x.
  • (3) Günay O, Saç MM, İçhedef M, Taşköprü C. Soil gas radon concentrations along the Ganos Fault (GF). Arab. J. Geosci. 2018; 11:1–5. doi:10.1007/s12517-018-3542-2.
  • (4) Karadeniz Ö, Çıyrak N, Yaprak G, Akal C. Terrestrial gamma exposure in the granodiorite area of Bergama (Pergamon)–Kozak, Turkey. J. Radioanal. Nucl. Chem. 2011; 288:919–926. doi:10.1007/s10967-011-1031-0.
  • (5) Saad AF, Al-Awami HH, Hussein NA. Radon exhalation from building materials used in Libya, Radiat. Phys. Chem. 2014; 101:15–19. doi:10.1016/j.radphyschem.2014.03.030.
  • (6) Sabbarese C, Ambrosino F, D’Onofrio A, Roca V. Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr. Build. Mater. 2021; 268:121087. doi:10.1016/j.conbuildmat.2020.121087.
  • (7) Kreuzer M, McLaughlin J. Radon. In: WHO Guidel. Indoor Air Qual. Sel. Pollut. Geneva: World Health Organization. 2010. p.347–369. doi:10.1016/B978-0-12-384947-2.00550-X.
  • (8) Özbay T, Karadeniz Ö, Vupa Çilengiroğlu Ö, Durak H, Eser S. A Comparative study on indoor radon levels between the lung cancer and cancer free groups in Izmir Province, Turkey. J. Basic Clin. Heal. Sci. 2021; 3:16–22. doi:10.30621/jbachs.873114.
  • (9) Çam NF, Özken İ, Yaprak G. A survey of natural radiation levels in soils and rocks from Aliağa-Foça Region in Izmir, Turkey. Radiat. Prot. Dosimetry. 2013; 155:169–180. doi:10.1093/rpd/ncs318.
  • (10) Karadeniz Ö, Yaprak G, Akal C, Emen İ. Indoor radon measurements in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. Radiat. Prot. Dosimetry. 2012; 149:147–154. doi:10.1093/rpd/ncr222.
  • (11) Özbay T, Karadeniz Ö. Indoor radon measurement in Izmir Province, Turkey. Int. J. Environ. Anal. Chem. 2016; 96:752–762. doi:10.1080/03067319.2016.1196684.
  • (12) Gupta M, Mahur AK, Varshney R, Sonkawade RG, Verma KD, Prasad R. Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Radiat. Meas. 2013; 50:160–165. doi:10.1016/j.radmeas.2012.03.015.
  • (13) Hatungimana D, Taşköprü C, İçhedef M, Saç MM, Yazıcı Ş. Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. J. Build. Eng. 2019; 23:369–376. doi:10.1016/j.jobe.2019.01.011.
  • (14) United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR Annex B: Exposures from natural radiation sources. United Nations, New York. 2000.
  • (15) Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S. Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J. Geochemical Explor. 2018; 184:304–310. doi:10.1016/j.gexplo.2017.05.002.
  • (16) UNSCEAR Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.1993.
  • (17) International Commission on Radiological Protection (ICRP). ICRP Publication 126: Radiological protection against radon exposure. Ann. 2014; 43(3).
  • (18) World Health Organization WHO. Handbook on Indoor Radon a Public Health Perspective. France. 2009.
  • (19) Official Gazette. Number: 23999. Radiation Safety Regulation, 2000.
  • (20) Sakoda A, Nishiyama Y, Hanamoto K, et al. Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl. Radiat. Isot. 2010; 68:1180–1184. doi:10.1016/j.apradiso.2009.12.036.
  • (21) Yousef HA, Saleh GM, El-Farrash AH, Hamza A. Radon exhalation rate for phosphate rocks samples using alpha track detectors. J. Radiat. Res. Appl. Sci. 2016; 9:41–46. doi:10.1016/j.jrras.2015.09.002.
  • (22) Singh H, Singh J, Singh S, Bajwa BS. Radon exhalation rate and uranium estimation study of some soil and rock samples from Tusham ring complex, India using SSNTD technique. Radiat. Meas. 2008; 43:459–462. doi:10.1016/j.radmeas.2008.04.060.
  • (23) Kumar A, Sharma S, Mehra R, Mishra R, Taloor AK, Bhattacharya P. Assessment of natural radioactivity levels in the Lesser Himalayas of the Jammu and Kashmir, India. J. Radioanal. Nucl. Chem. 2022. doi:10.1007/s10967-021-08164-2.
There are 23 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Buket Canbaz Öztürk 0000-0001-5761-5901

Project Number Bir projenin parçası değildir, finansal destek yoktur.
Publication Date September 29, 2022
Submission Date March 17, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Canbaz Öztürk, B. (2022). Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure. Journal of Basic and Clinical Health Sciences, 6(3), 884-890. https://doi.org/10.30621/jbachs.1089447
AMA Canbaz Öztürk B. Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure. JBACHS. September 2022;6(3):884-890. doi:10.30621/jbachs.1089447
Chicago Canbaz Öztürk, Buket. “Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure”. Journal of Basic and Clinical Health Sciences 6, no. 3 (September 2022): 884-90. https://doi.org/10.30621/jbachs.1089447.
EndNote Canbaz Öztürk B (September 1, 2022) Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure. Journal of Basic and Clinical Health Sciences 6 3 884–890.
IEEE B. Canbaz Öztürk, “Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure”, JBACHS, vol. 6, no. 3, pp. 884–890, 2022, doi: 10.30621/jbachs.1089447.
ISNAD Canbaz Öztürk, Buket. “Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure”. Journal of Basic and Clinical Health Sciences 6/3 (September 2022), 884-890. https://doi.org/10.30621/jbachs.1089447.
JAMA Canbaz Öztürk B. Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure. JBACHS. 2022;6:884–890.
MLA Canbaz Öztürk, Buket. “Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure”. Journal of Basic and Clinical Health Sciences, vol. 6, no. 3, 2022, pp. 884-90, doi:10.30621/jbachs.1089447.
Vancouver Canbaz Öztürk B. Radon Exhalation Rate and Annual Effective Dose for Different Rock Types and Excess Lifetime Cancer Risk from Radon Exposure. JBACHS. 2022;6(3):884-90.

Cited By