Background and aim: Clinical risk assessments should be made to protect patients from negative outcomes, and the definition, frequency and severity of the risk should be determined. The information contained in the electronic health records (EHRs) can use in different areas such as risk prediction, estimation of treatment effect ect. Many prediction models using artificial intelligence (AI) technologies that can be used in risk assessment have been developed. The aim of this study is to bring together the researches on prediction models developed with AI technologies using the EHRs of patients hospitalized in the intensive care unit (ICU) and to evaluate them in terms of risk management in healthcare.
Methods: The study restricted the search to the Web of Science, Pubmed, Science Direct, and Medline databases to retrieve research articles published in English in 2010 and after. Studies with a prediction model using data obtained from EHRs in the ICU are included. The study focused solely on research conducted in ICU to predict a health condition that poses a significant risk to patient safety using artificial intellegence (AI) technologies.
Results: Recognized prediction subcategories were mortality (n=6), sepsis (n=4), pressure ulcer (n=4), acute kidney injury (n=3), and other areas (n=10). It has been found that EHR-based prediction models are good risk management and decision support tools and adoption of such models in ICUs may reduce the prevalence of adverse conditions.
Conclusions: The article results remarks that developed models was found to have higher performance and better selectivity than previously developed risk models, so they are better at predicting risks and serious adverse events in ICU. It is recommended to use AI based prediction models developed using EHRs in risk management studies. Future work is still needed to researches to predict different health conditions risks.
Primary Language | English |
---|---|
Subjects | Health Care Administration |
Journal Section | Reviews |
Authors | |
Publication Date | September 29, 2022 |
Submission Date | September 10, 2021 |
Published in Issue | Year 2022 Volume: 6 Issue: 3 |