Projected Changes in Drought Severity and Spatial Patterns across Türkiye under RCP4.5 and RCP8.5 Scenarios
Year 2025,
Volume: 19 Issue: 57, 35 - 47, 01.12.2025
Ali Kaan Yetik
,
Burak Nazmi Candoğan
Abstract
This study evaluates the future impacts of climate change on drought severity across Türkiye using high-resolution climate projections from three Global Climate Models (GFDL-ESM2M, HadGEM2-ES, MPI-ESM-MR) under RCP4.5 and RCP8.5 scenarios. Drought conditions were assessed using the 12-month Reconnaissance Drought Index (RDI-12), which integrates both precipitation and evapotranspiration (ETo), for historical (1971–2000), near-future (2023–2052), and distant-future (2069–2098) periods. The Mann-Kendall test was used to detect trends, while Sen’s slope estimator and spatial visualization techniques were applied to assess the magnitude and spatial distribution of changes. Results indicate a significant increase in drought frequency and severity, particularly under the RCP4.5 and RCP8.5 scenarios. Multi-model averages indicate a projected increase of up to 21% in extreme drought frequency (RDI ≤ –2) in the near future under RCP4.5. Central Anatolia, Eastern Mediterranean, and parts of Eastern Anatolia were identified as regions highly vulnerable to intensified drought. Spatial analyses revealed considerable regional heterogeneity, showing varying drought trends depending on the climate model and emission scenario. Overall, the study emphasizes the critical need for region-specific drought mitigation strategies and robust adaptation policies to safeguard agricultural productivity and water resource sustainability under anticipated climate change scenarios.
Thanks
This study contains partial findings of the PhD dissertation of Ali Kaan Yetik. The authors are gratefully acknowledged to the Turkish State Meteorological Service for sharing meteorological data used for this study.
References
-
Akçakaya, A., Sümer, U.M., Demircan, M., Demir, Ö., Atay, H., Eskioğlu, O., Gürkan, H., Yazıcı, B., Kocatürk, A., Şensoy, S., Bölük, E., Arabacı, H., Açar, Y., Ekici, M., Yağan, S., and Çukurçayır, F. 2015. Yeni senaryolarla Türkiye iklim projeksiyonlari ve iklim değişikliği-TR2015-CC. Meteoroloji Genel Müdürlüğü Yayını, Ankara, pp. 149.
-
Akram, M., Khan, F., Ullah, H., Ali, S., and Hussain, A. 2024. Enhancing drought risk assessment in the Punjab, Pakistan: A copula-based modeling approach for future projections. Journal of Applied Meteorology and Climatology, 63(10):1207–1225. https://doi.org/10.1175/JAMC-D-24-0041.1
-
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements): FAO Irrigation and Drainage Paper No. 56
-
Amognehegn, A.E., Nigussie, A.B., Adamu, A.Y., and Mulu, G.F. 2023. Analysis of future meteorological, hydrological, and agricultural drought characterization under climate change in Kessie watershed, Ethiopia. Geocarto International, 38(1), 2247377. https://doi.org/10.1080/10106049.2023.2247377
-
Anlı, A.S. 2014. Güneydoğu Anadolu Bölgesinde referans bitki su tüketiminin (ET0) zamansal değişimi ve RDI (Keşif Kuraklik İndeksi) yöntemiyle meteorolojik kuraklik analizi. Journal of Agricultural Sciences, 20(3). https://doi.org/10.15832/tbd.82527
-
Deser, C., Lehner, F., Rodgers, K.B., Ault, T., Delworth, T.L., DiNezio, P.N., and Ting, M. 2020. Insights from Earth system model initial-condition large ensembles. Nature Climate Change, 10(4):277–286. https://doi.org/10.1038/s41558-020-0731-2
-
Geyikli, M.S., Hınıs, M.A., and Yürekli, K. 2022. Drought analysis with two different indices in Yeşilirmak Basin. Journal of Agricultural Faculty of Gaziosmanpaşa University, 39(3):151-160. https://doi.org/10.55507/gopzfd.1166245
-
Gilbert, R.O. 1987. Statistical methods for environmental pollution. John Wiley & Sons, Inc, New York, pp. 151
IPCC 2021. Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
-
Katipoğlu, O.M., Acar, R., Şenocak, S., and Şengül, S. 2022. Assessment of meteorological drought trends in the Euphrates Basin, Türkiye. Arabian Journal of Geosciences, 15(6): 555. https://doi.org/10.1007/s12517-021-08482-5
-
Kesgin, E., Yaldız, S.G., and Güçlü, Y.S. 2024. Spatiotemporal variability and trends of droughts in the Mediterranean coastal region of Türkiye. International Journal of Climatology, 44(4): 1036-1057. https://doi.org/10.1002/joc.8370
-
Lesk, C., Rowhani, P., and Ramankutty, N. 2016. Influence of extreme weather disasters on global crop production. Nature, 529(7584): 84-87 https://doi.org/10.1038/nature16467
-
Lin, L., Gettelman, A., Fu, Q., and Xu, Y. 2018. Simulated differences in aridity due to greenhouse gases and aerosols. Climatic Change, 146(3): 407–422. https://doi.org/10.1007/s10584-016-1615-3
-
Lu, J., Carbone, G.J., and Grego, J.M. 2019. Uncertainty and hotspots in drought projections from CMIP5 models. Scientific Reports, 9(1): 4922. https://doi.org/10.1038/s41598-019-41196-z
-
Lyon, B. 2004. The strength of El Niño and the spatial extent of tropical drought. Geophysical Research Letters, 31(21): L21204. https://doi.org/10.1029/2004GL020901
-
Mahmood, S.A., Tahir, Z., Batool, S., Masood, A., Haseeb, M., and Muhammad Ali, M. 2023. Appraisal of climate change disaster and food security in Khyber Pakhtunkhaw Pakistan using geospatial technologies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48: 425-432. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-425-2023
-
Marvel, K., Cook, B.I., Bonfils, C.J., Durack, P.J., Smerdon, J.E., and Williams, A.P. 2019. Twentieth-century hydroclimate changes. Nature, 569(7754): 59–65. https://doi.org/10.1038/s41586-019-1149-8
-
Mehdizadeh, S., Ahmadi, F., Mehr, A.D., and Safari, M.J.S. 2020. Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587. https://doi.org/10.1016/j.jhydrol.2020.125017
-
Mishra, A.K., and Singh, V.P. 2010. A review of drought concepts. Journal of Hydrology, 391(1-2): 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
-
Nalbantis, I., and Tsakiris, G. 2009. Assessment of hydrological drought revisited. Water Resources Management, 23:881–897. https://doi.org/10.1007/s11269-008-9305-1.
-
Rahman, M.N. 2024. Seasonal and annual trends in reference evapotranspiration and prediction using machine learning models across seven climatic zones of Bangladesh. Geology, Ecology, and Landscapes, 1-16. https://doi.org/10.1080/24749508.2024.2429223
-
Scheff, J., and Frierson, D.M.W. 2015. Terrestrial aridity response to greenhouse warming. Journal of Climate, 28(14): 5583–5600. https://doi.org/10.1175/JCLI-D-14-00480.1
-
Şimşek, O., Sankaran, A., and Şenol, H.İ. 2024. Multiscale investigations on RDI-SPI teleconnections of Çoruh and Aras Basins, Türkiye using time dependent intrinsic correlation. Physics and Chemistry of the Earth Parts A/B/C, 136: 103787. https://doi.org/10.1016/j.pce.2024.103787
-
Swann, A.L., Hoffman, F.M., Koven, C.D., and Randerson, J.T. 2016. Plant responses to CO2 reduce climate impacts on drought. Proceedings of the National Academy of Sciences, 113(36): 10019–10024. https://doi.org/10.1073/pnas.1604581113
-
Tsakiris, G., Pangalou, D., and Vangelis, H. 2007. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21: 821-833. https://doi.org/10.1007/s11269-006-9105-4
-
Wubneh, M. A., Alemu, M.G., Sahlu, D., and Kifelew, M.S. 2024. Hydro meteorological drought predictions and trend analysis for ungauged watersheds in the Upper Blue Nile basin, Ethiopia, under future climate change impact scenarios. Journal of Water and Climate Change, 15(11): 5458-5481. https://doi.org/10.2166/wcc.2024.306
-
Yılmaz, M.U. 2023. Keşif kuraklık indeksi ve standartlaştırılmış yağış indeksi kullanılarak kırklareli ilinde kuraklığın eğilimi ve zamansal değişkenliği. Doğal Afetler ve Çevre Dergisi, 9(2): 341-364. https://doi.org/10.21324/dacd.1296428
-
Yüce, M., and Eşit, M. 2020. Ceyhan havzasının kuraklık risk haritasının SPI ve SPEI metotları ile belirlenmesi. Su Kaynakları, 5(2): 1-8.