A review of production techniques, classifications, material gradation rules, and industrial applications of functionally graded materials
Year 2026,
Volume: 2 Issue: 1, 23 - 57, 20.02.2026
Atteshamuddin Sayyad
,
Harshada Wagh
Abstract
Functionally graded materials (FGMs) are advanced composite materials, which greatly improve over fibrous composite materials often subjected to delamination type of failure. The material properties of FGMs vary gradually in single or multiple directions. FGM consists of two or more materials whose combination enables the achievement of specified properties by the desired applications. The article focused on a review of various manufacturing/fabrication methods of FGMs, material gradation rules of FGMs and various industrial applications of FGMs. The literature on the classification of FGMs according to types of gradients, sizes or scales, state of matter, etc. is reviewed and discussed. Along with this, the literature on fabrication methods such as gas-based, liquid-based and solid-based is also reviewed and discussed. Finally, the literature on various industrial applications of the FGMs is reviewed and discussed.
References
-
Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23–36. https://doi.org/10.1038/nmat4089
-
Eder, M., Jungnikl, K., & Burgert, I. (2009). A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees, 23(1), 79–84. https://doi.org/10.1007/s00468-008-0256-1
-
Habibi, M. K., Samaei, A. T., Gheshlaghi, B., Lu, J., & Lu, Y. (2015). Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms. Acta Biomaterialia, 16(1), 178–186. https://doi.org/10.1016/j.actbio.2015.01.038
-
Niino, M. (1987). Functionally gradient materials as thermal barrier for space plane. Journal of the Japan Society for Composite Materials, 13(1), 257–264. https://doi.org/10.1109/TNS.1987.4336115
-
Shen, M., & Bever, M. B. (1972). Gradients in polymeric materials. Journal of Materials Science, 7(1), 741–746. https://doi.org/10.1007/BF00550028
-
Miyamoto, Y. (1996). The applications of functionally graded materials in Japan. Materials Technology A, 11(1), 230–236. https://doi.org/10.1016/S0927-796X(96)00023-0
-
Koizumi, M. (1993). The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, 34(1), 3–10.
-
Sayyad, A. S., Hadji, L., & Tounsi, A. (2023). On the mechanics of FG nanobeams: A review with numerical analysis. Forces in Mechanics, 12(1), 100219. https://doi.org/10.1016/j.finmec.2023.100219
-
Cho, L. (1985). Functionally graded materials. In Handbook of Advanced Ceramics (pp. 445–464). https://doi.org/10.1007/978-1-4899-0259-3_29
-
Shahisha, S. K. (1995). Review: Modelling studies applied to functionally graded materials. Journal of Materials Science, 30(1), 2185–2198. https://doi.org/10.1007/s10853-020-05820-1
-
Sayyad, A. S., & Ghugal, Y. M. (2019). Modeling and analysis of functionally graded sandwich beams: A review. Mechanics of Advanced Materials and Structures, 26(21), 1776–1795. https://doi.org/10.1080/15376494.2018.1447178
-
Toudehdehghan, A., Lim, J. W., Foo, K. E., & Mathews, J. (2017). A brief review on functionally graded materials. Babylon Journal of Engineering Sciences, 26(1), 45–78. https://doi.org/10.1051/matecconf/201713103010
-
Radhi, N. S. (2018). A review for functionally gradient material, processes & useful application. Journal of University of Babylon for Engineering Sciences, 26(1), 42–47. https://doi.org/10.5772/52591
-
Himasekhar, B. V. (2018). A review on functionally graded materials (FGMs) and their applications. International Journal of Current Engineering and Technology, 8(1), 79–83. https://doi.org/10.14778/338202
-
Mahmood, M., & Ghadiri, M. R. (2021). Functionally graded materials (FGM): A review of classification, fabrication methods, and their applications. Processing and Application of Ceramics, 15(4), 319–343. https://doi.org/10.14778/52591
-
Saad, A. R. (2020). A review on functionally graded materials & their applications in the field of prosthetics. Engineering Research Journal, 45(1), 553–560. https://doi.org/10.1115/1.4043124
-
Hassan, A. F., Abood, A. M., Khalaf, H. I., Faroug, W., & Khazal, H. (2022). A review of functionally graded materials including their manufacture and applications. Mechanical Engineering, 7(1), 45–67. https://doi.org/10.1016/j.apmt.2016.11.001
-
Erdemir, F., Canakci, A., & Varol, T. (2015). Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques. Transactions of Nonferrous Metals Society of China, 25(12), 3569–3577. https://doi.org/10.1016/S1003-6326(15)63911-1
-
Canakci, A., Varol, T., Ozkaya, S., & Erdemir, F. (2014). Microstructure and properties of Al–B₄C functionally graded materials produced by powder metallurgy method. Universal Journal of Materials Science, 2(5), 90–95. https://doi.org/10.13189/ujms.2014.020405
-
Zhu, J., Lai, Z., Yin, Z., Jeon, J., & Lee, S. (2001). Fabrication of ZrO₂–NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics, 68(1–3), 130–135. https://doi.org/10.1016/S0254-0584(00)00383-0
-
Tripathy, A., Sarangi, S. K., & Panda, R. (2017). Fabrication of functionally graded composite material using powder metallurgy route: An overview. International Journal of Mechanical and Production Engineering Research and Development, 7(6), 135–145. https://doi.org/10.17148/IJMPE.2017.7619
-
Cleophas, O., Bayode, A., Fredrick, M., & Jen, T.-C. (2024). Fabrication of functionally graded materials through severe plastic deformation of powders: Process, significance, and future development. E3S Web of Conferences, 505(1), 01013. https://doi.org/10.1051/e3sconf/202450501013
-
Kunimine, T., Sato, H., Miura-Fujiwara, E., & Watanabe, Y. (2016). New processing routes for functionally graded materials and structures through combinations of powder metallurgy and casting. Advanced Functionally Graded Materials and Structures, 1–15. https://doi.org/10.5772/60744
-
Vijay, S., & Ch, S. R. A. (2019). A comparative investigation of hardness and compression strength of nickel-coated B₄C reinforced 601AC/201AC selective layered functionally graded materials. Materials Research Express, 7(1), 016527. https://doi.org/10.1088/2053-1591/ab6d36
-
Sadoun, A. M., Fathy, A., Abu-Oqail, A., Elmetwaly, H. T., & Wagih, A. (2020). Structural, mechanical and tribological properties of Cu–ZrO₂/GNPs hybrid nanocomposites. Ceramics International, 46(6), 7586–7594. https://doi.org/10.1016/j.ceramint.2019.12.029
-
Lewis, J. S., Barani, Z., Magana, A. S., & Kargar, F. (2019). Dry slide wear behavior of 601AC/B₄C selective layered functionally graded material with particulate Ni–P coating. Materials Research Express, 6(12), 126507. https://doi.org/10.1088/2053-1591/ab40fa
-
Tan, C., Wang, C., Wang, S., Wang, G., Ji, L., Tong, Y., & Duan, X. M. (2017). Investigation on 316L/316L–50W/W plate functionally graded materials fabricated by spark plasma sintering. Fusion Engineering and Design, 125(1), 171–177. https://doi.org/10.1016/j.fusengdes.2017.09.030
-
Bahraminasab, M., Ghaffari, S., & Eslami-Shahed, H. (2017). Al₂O₃–Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 72(1), 82–89. https://doi.org/10.1016/j.jmbbm.2017.05.039
-
Fujii, T., & Tohgo, K. (2019). Spark plasma sintering of Ti–PSZ composites and functionally graded materials for biocompatible materials. In P. Cavaliere (Ed.), Spark Plasma Sintering of Materials (pp. 739–767). Cham: Springer. https://doi.org/10.1007/978-3-030-05962-5_29
-
Chaubey, A. K., Gupta, R., Kumar, R., Verma, B., Kanpara, S., Bathula, S., Khirwadkar, S. S., & Dhar, A. (2018). Fabrication and characterization of W–Cu functionally graded material by spark plasma sintering process. Fusion Engineering and Design, 135(1), 24–30. https://doi.org/10.1016/j.fusengdes.2018.06.017
-
Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23(1), 34–44. https://doi.org/10.1016/j.addma.2018.06.023
-
Yan, L., Chen, Y., & Liou, F. (2020). Additive manufacturing of functionally graded metallic materials using laser metal deposition. Additive Manufacturing, 31(1), 100901. https://doi.org/10.1016/j.addma.2019.100901
-
Bodaghi, M., Damanpack, A. R., & Liao, W. H. (2017). Adaptive metamaterials by functionally graded 4D printing. Materials & Design, 135(1), 26–36. https://doi.org/10.1016/j.matdes.2017.08.069
-
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30–35. https://doi.org/10.1021/nl801827v
-
Choy, K. L. (2003). Chemical vapour deposition of coatings. Progress in Materials Science, 48(2), 57–170. https://doi.org/10.1016/S0079-6425(01)00009-3
-
Sasaki, M., & Hirai, T. (1994). Thermal fatigue resistance of CVD SiC/C functionally gradient material. Journal of the European Ceramic Society, 14(3), 257–260. https://doi.org/10.1016/0955-2219(94)90094-9
-
Jung, Y., Park, S., & Choi, S. (1997). Effect of CH₄ and H₂ on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM. Materials Letters, 30(5–6), 339–345. https://doi.org/10.1016/S0167-577X(96)00221-2
-
Jain, M., Sadangi, R. K., Cannon, W. R., & Kear, B. H. (2001). Processing of functionally graded WC/Co/diamond nanocomposites. Scripta Materialia, 44(9), 2099–2103. https://doi.org/10.1016/S1359-6462(01)00882-X
-
Kawase, M., Tago, T., Kurosawa, M., Utsumi, H., & Hashimoto, K. (1999). Chemical vapor infiltration and deposition to produce a silicon carbide–carbon functionally gradient material. Chemical Engineering Science, 54(14), 3327–3334. https://doi.org/10.1016/S0009-2509(98)00391-1
-
Seifried, S., Winterer, M., & Hahn, H. (2001). Nanocrystalline gradient films through chemical vapor synthesis. Scripta Materialia, 44(11), 2165–2168. https://doi.org/10.1016/S1359-6462(01)00898-3
-
Binner, J. G. P., McDermott, A. M., Yin, Y., Sambrook, R. M., & Vaidhyanathan, B. (2006). In situ coagulation moulding: A new route for high-quality, net-shape ceramics. Ceramics International, 32(1), 29–35. https://doi.org/10.1016/j.ceramint.2005.02.009
-
Shbeh, M. M., & Goodall, R. (2017). Open celled porous titanium. Advanced Engineering Materials, 19(9), 1600664. https://doi.org/10.1002/adem.201600664
-
Togawa, Y., Matsuno, T., & Kaneko, K. (1996). Fabrication of functionally gradient material by a centrifugal solid-particle method. Materials Science and Engineering: A, 216(1–2), 193–198. https://doi.org/10.1016/S0921-5093(96)10473-1
-
Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M., & Kawasaki, T. (2004). Biocompatibility of materials and development to functionally graded implant for biomedical application. Composites Science and Technology, 64(6), 893–908. https://doi.org/10.1016/j.compscitech.2003.09.004
-
Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1–3), 663–684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3
-
Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6), 593–626. https://doi.org/10.1080/01495739808956165
-
Yang, J., & Shen, H. S. (2003). Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. Journal of Sound and Vibration, 261(5), 871–893. https://doi.org/10.1016/S0022-460X(02)01067-2
-
Ferreira, A. J. M., Roque, C. M. C., & Jorge, R. M. N. (2005). Analysis of functionally graded material plates by a new trigonometric shear deformation theory. International Journal for Numerical Methods in Engineering, 62(6), 829–848. https://doi.org/10.1002/nme.1219
-
Zenkour, A. M. (2005). Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 29(6), 580–595. https://doi.org/10.1016/j.apm.2004.09.004
-
Huang, X. L., & Shen, H. S. (2004). Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures, 41(9–10), 2403–2427. https://doi.org/10.1016/j.ijsolstr.2004.01.019
-
Xiang, H. J., & Shi, Z. F. (2005). Vibration and buckling of functionally graded plates under in-plane loads. Journal of Sound and Vibration, 287(4–5), 1029–1044. https://doi.org/10.1016/j.jsv.2005.02.046
-
Woo, J., & Meguid, S. A. (2001). Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures, 38(42–43), 7409–7421. https://doi.org/10.1016/S0020-7683(01)00049-2
-
Matsunaga, H. (2008). Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite Structures, 82(4), 499–512. https://doi.org/10.1016/j.compstruct.2007.01.018
-
Matsunaga, H. (2009). Assessment of a global higher-order deformation theory for laminated composite and sandwich plates. Composite Structures, 87(1), 1–16. https://doi.org/10.1016/j.compstruct.2007.12.005
-
Soldatos, K. P., & Ye, J. Q. (1996). Thermal buckling of thick orthotropic plates and cylindrical shells. Journal of Thermal Stresses, 19(2), 95–113. https://doi.org/10.1080/01495739608946131
-
Wakashima, K., Hirano, T., & Tsukamoto, K. (1974). The concept and analysis of functionally gradient materials. Transactions of the Japan Society of Mechanical Engineers (JSME), 40(333), 676–682.
-
Kim, J., & Paulino, G. H. (2002). Finite element evaluation of mixed-mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering, 53(8), 1903–1935.
-
Zhang, C., Savaidis, A., Savaidis, G., & Zhu, H. (2003). Transient dynamic analysis of a cracked functionally graded material by a BIEM. Computational Materials Science, 26, 167–174.
-
Chung, Y. L., & Chi, S. H. (2001). The residual stress of functionally graded materials. Journal of Chiri Institute of Civil and Hydraulic Engineering, 12, 1–9.
-
Aldousari, S. M. (2017). Bending analysis of different material distributions of functionally graded beam. Applied Physics A, 123(296). https://doi.org/10.1007/s00339-017-0854-0
-
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with
-
Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., & Sugano, Y. (1993). An improved solution to thermoelastic material design in functionally gradient materials: Scheme to reduce thermal stresses. Computer Methods in Applied Mechanics and Engineering, 109(3–4), 377–389. https://doi.org/10.1016/0045-7825(93)90088-F
-
Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., & Sugano, Y. (1993). Design of thermoelastic materials using direct sensitivity and optimization methods: Reduction of thermal stresses in functionally gradient materials. Computer Methods in Applied Mechanics and Engineering, 106(1–2), 271–284. https://doi.org/10.1016/0045-7825(93)90193-2
-
Benveniste, Y. (1987). A new approach to the application of Tanaka's theory of composite materials. Mechanics of Materials, 6, 147–157. https://doi.org/10.1016/0167-6636(87)90053-3
-
Li, W., & Han, B. (2018). Research and application of functionally graded material. IOP Conference Series: Materials Science and Engineering, 394, 022065. https://doi.org/10.1088/1757-899X/394/2/022065
-
Megahid, S. F. (2025). Analysis of a heterogeneous functionally graded material with a spherical void exposed to time-dependent ramp-type heating according to the TPL heat conduction model. Scientific Reports, 15, 26942. https://doi.org/10.1038/s41598-025-11471-3
-
Sharma, N. K., Bhandari, M., & Ashirvad. (2014). Applications of functionally graded materials (FGMs). International Journal of Engineering Research and Technology, 2(3), 334–339. https://doi.org/10.5281/zenodo.1077862
-
Shumiya, H., Kato, K., & Okubo, H. (2004). Feasibility study on FGM (functionally graded materials) application for gas insulated equipment. In Proceedings of the 17th IEEE Lasers and Electro-Optics Society (pp. 360–363). Boulder, CO, USA.
-
Gupta, B. (2017). Few studies on biomedical applications of functionally graded material. International Journal of Engineering Technology Science Research, 4(3), 39–43. https://doi.org/10.5281/zenodo.2584765
-
Bhavar, B. (2017). Studies on biomedical applications of functionally graded material. International Journal of Engineering Technology Science Research, 4(3), 39–43. https://doi.org/10.5281/zenodo.2584765
-
Petrovic, J. J., & McClellan, K. J. (1998). Ceramic/polymer functionally graded material (FGM) lightweight armor system. Los Alamos National Laboratory, Los Alamos, NM, USA.
-
Chin, E. S. C. (1999). Army focused research team on functionally graded armor composites. Materials Science and Engineering: A, 259(2), 155–161. https://doi.org/10.1016/S0921-5093(98)00946-0
-
Chin, C. Y., & Chen, Y. L. (2016). Design and impact resistant analysis of functionally graded Al₂O₃-ZrO₂ ceramic composite. Materials & Design, 91, 294–305. https://doi.org/10.1016/j.matdes.2015.12.039
-
Gupta, N., Bhanu Prasad, V. V., Madhu, V., & Basu, B. (2012). Ballistic studies on TiB₂-Ti functionally graded armor ceramics. Defence Science Journal, 62(6), 382–389. https://doi.org/10.14429/dsj.62.2303
-
Pines, M. L., & Bruck, H. A. (2006). Pressureless sintering of particle reinforced metal-ceramic composites for functionally graded materials: Part II: Sintering model. Acta Materialia, 54(6), 1467–1474. https://doi.org/10.1016/j.actamat.2005.11.013
-
Ubeyli, M., Balci, E., Sarikan, B., Oztas, M. K., Camuscu, N., Yildirim, R. O., & Keles, O. (2014). The ballistic performance of SiC-AA7075 functionally graded composite produced by powder metallurgy. Materials & Design, 56, 31–36. https://doi.org/10.1016/j.matdes.2013.10.019
-
Chao, Z. L., Jiang, L. T., Chen, G. Q., Qiao, J. Z., Yu, Z. H., Cao, Y. F., & Wu, G. H. (2019). The microstructure and ballistic performance of B₄C/AA2024 functionally graded composites with wide range B₄C volume fraction. Composites Part B: Engineering, 161, 627–638. https://doi.org/10.1016/j.compositesb.2019.01.038
-
Gunes, R., Hakan, M., Apalak, M. K., & Reddy, J. N. (2021). Numerical investigation on normal and oblique ballistic impact behavior of functionally graded plates. Mechanics of Advanced Materials and Structures, 28(20), 2114–2130. https://doi.org/10.1080/15376494.2020.1844372
-
He, J., & Wang, M. (2015). Ballistic performance of laminated functionally graded composites of TiB₂-based ceramic and Ti-6Al-4V alloy against 14.5 mm heavy machine gun AP of impact velocity 990 m•s⁻¹. In Proceedings of the 4th International Conference on Sustainable Energy and Environmental Engineering (pp. 715–720). Shenzhen, China.
-
Huang, C. Y., & Chen, Y. L. (2016). Effect of mechanical properties on the ballistic resistance capability of Al₂O₃-ZrO₂ functionally graded materials. Ceramics International, 42(11), 12946–12955. https://doi.org/10.1016/j.ceramint.2016.04.116
-
Yilmaz, T. (2019). Development of functional graded aluminum matrix composite materials for defense industry applications [Master’s thesis, Middle East Technical University]. Ankara, Turkey.
-
Wendte, K. W., Meiners, T. D., & Zemenchik, R. A. (2017). Tool system for resisting abrasive wear of a ground engaging tool of an agricultural implement. U.S. Patent No. 20130146317A1.
-
Karacif, K. (2020). Hardness and corrosion properties of functionally graded AA5083/Al₂O₃ composites produced by powder metallurgy method. International Journal of Materials Research, 111(9), 719–725. https://doi.org/10.3139/146.111955
-
Rosso, M., Porto, G., & Geminiani, A. (1999). Studies of graded cemented carbides components. International Journal of Refractory Metals and Hard Materials, 17(1), 187–192. https://doi.org/10.1016/S0263-4368(98)00060-7
-
Nomura, T., Moriguchi, H., Tsuda, K., Isobe, K., Ikegaya, A., & Moriyama, K. (1999). Material design method for the functionally graded cemented carbide tool. International Journal of Refractory Metals and Hard Materials, 17(6), 397–404. https://doi.org/10.1016/S0263-4368(99)00031-2
-
Hadipour, A., Rahsepar, M., & Hayatdavoudi, H. (2019). Fabrication and characterisation of functionally graded Ni-P coatings with improved wear and corrosion resistance. Surface Engineering, 35(10), 883–890. https://doi.org/10.1080/02670844.2018.1551261
-
Zhang, R., Cui, G., Su, X., Yu, X., & Li, Z. (2020). A novel functionally graded Ni-graphene coating and its corrosion resistance. Journal of Alloys and Compounds, 829, 154495. https://doi.org/10.1016/j.jallcom.2020.154495
-
Karimzadeh, A., Aliofkhazraei, M., & Rouhaghdam, A. S. (2019). Study on wear and corrosion properties of functionally graded nickel–cobalt–(Al₂O₃) coatings produced by pulse electrodeposition. Bulletin of Materials Science, 42(2), 53. https://doi.org/10.1007/s12034-019-1894-2
-
Radhika, N., & Raghu, R. (2017). Synthesis of functionally graded aluminium composite and investigation on its abrasion wear behaviour. Journal of Engineering Science and Technology, 12(5), 1386–1398.
-
Chen, X. W., & Yue, Z. Q. (2019). Contact mechanics of two elastic spheres reinforced by functionally graded materials (FGM) thin coatings. Engineering Analysis with Boundary Elements, 109, 57–69.
-
Zhang, Y., Guo, L., Wang, X., Shen, R., & Huang, K. (2019). Thermal shock resistance of functionally graded materials with mixed-mode cracks. International Journal of Solids and Structures, 164, 202–211. https://doi.org/10.1016/j.ijsolstr.2018.11.013
-
Sayyad, A. S., Avhad, P. V., & Hadji, L. (2022). On the static deformation and frequency analysis of functionally graded porous circular beams. Forces in Mechanics, 7, 100093.
-
Sayyad, A. S., & Avhad, P. V. (2022). A new higher order shear and normal deformation theory for the free vibration analysis of sandwich curved beams. Composite Structures, 280, 114948. https://doi.org/10.1016/j.compstruct.2021.114948
-
Ghumare, S. M., & Sayyad, A. S. (2017). Static bending and elastic buckling of p-FGM beams using a new fifth-order shear and normal deformation theory. Latin American Journal of Solids and Structures, 14(11), 1893–1911. https://doi.org/10.1590/1679-78253972
-
Shinde, B. M., Sayyad, A. S., & Naik, N. S. (2024). Assessment of a new higher-order shear and normal deformation theory for the static response of functionally graded shallow shells. Curved and Layered Structures, 11, 20240014. https://doi.org/10.1515/cls-2024-0014
-
Shinde, B. M., Sayyad, A. S., Naik, N. S., & Hadji, L. (2025). Fifth-order shear and normal deformation theory for static analysis of functionally graded porous shells of double curvature. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2025.2482176
-
Kolapkar, S. S., & Sayyad, A. S. (2024). Static analysis of functionally graded shells of double curvature using trigonometric shear and normal deformation theory. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2024.2445216
-
Sayyad, A. S., & Ghugal, Y. M. (2021). Bending, buckling, and vibration analysis of functionally graded nanobeams using an inverse trigonometric beam theory. International Journal of Nano Dimension, 12, 164–174. https://doi.org/10.22034/ijnd.2021.679281
-
Dagade, V. A., Kulkarni, S. D., & Sayyad, A. S. (2022). Free vibration response of cylindrical and spherical functionally graded material shell panels using a quadrilateral finite element. Materials Today: Proceedings, 63, 289–294. https://doi.org/10.1016/j.matpr.2022.03.083
-
Sayyad, A. S., & Avhad, P. V. (2022). Higher-order model for the thermal analysis of laminated composite, sandwich, and functionally graded curved beams. Journal of Thermal Stresses, 45, 382–400. https://doi.org/10.1080/01495739.2022.2050476
-
Alnujaie, A., Sayyad, A. S., Hadji, L., & Tounsi, A. (2022). Buckling and free vibration analysis of multi-directional functionally graded sandwich plates. Structural Engineering and Mechanics, 84(6), 813–822. https://doi.org/10.12989/sem.2022.84.6.813
-
Ghumare, S. M., & Sayyad, A. S. (2019). Analysis of functionally graded plates resting on elastic foundation and subjected to non-linear hygro-thermo-mechanical loading. JMST Advances, 1, 233–248. https://doi.org/10.1007/s42791-019-00024-1
-
Larbi, L. O., Saad, M., Zouatnia, N., Hadji, L., & Sayyad, A. S. (2025). A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions. Mechanics of Advanced Materials and Structures, 32, 403–412. https://doi.org/10.1080/15376494.2024.2346946
-
Ghumare, S. M., & Sayyad, A. S. (2019). Nonlinear hygro-thermo-mechanical analysis of functionally graded plates using a fifth-order plate theory. Arabian Journal for Science and Engineering, 44, 8727–8745. https://doi.org/10.1007/s13369-019-03894-8
-
Avhad, P. V., & Sayyad, A. S. (2020). Static analysis of functionally graded composite beams curved in elevation using higher order shear and normal deformation theory. Materials Today: Proceedings, 21(2), 1195–1199. https://doi.org/10.1016/j.matpr.2020.01.069
-
Sayyad, A. S., & Avhad, P. V. (2019). On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams. Journal of Solid Mechanics, 11(1), 166–180. https://doi.org/10.22034/JSM.2019.664227
-
Ghumare, S. M., & Sayyad, A. S. (2019). A new quasi-3D model for functionally graded plates. Journal of Applied and Computational Mechanics, 5(2), 367–380. https://doi.org/10.22055/jacm.2018.26739.1353
-
Sayyad, A. S., & Ghugal, Y. M. (2021). A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates. Journal of Sandwich Structures & Materials, 23(2). https://doi.org/10.1177/1099636219840980
-
Sayyad, A. S., & Ghugal, Y. M. (2017). A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates. International Journal of Applied Mechanics, 9(1), 1750007. https://doi.org/10.1142/S1758825117500077
-
Sayyad, A. S., & Ghugal, Y. M. (2018). Bending, buckling and free vibration responses of hyperbolic shear deformable FGM beams. Mechanics of Advanced Composite Structures, 5, 13–24. http://dx.doi.org/10.22075/macs.2018.12214.1117
-
Sayyad, A. S., Avhad, P. V., & Palekar, S. P. (2023). Free vibration analysis of anti-symmetric FGM sandwich circular beams using a fifth-order circular beam theory. Romanian Journal of Acoustics and Vibration, 19(2), 164–174.
-
Sayyad, A. S., & Ghugal, Y. M. (2019). A sinusoidal beam theory for functionally graded sandwich curved beams. Composite Structures, 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246
-
Sayyad, A. S., & Ghugal, Y. M. (2018). Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams. Asian Journal of Civil Engineering, 19, 607–623. https://doi.org/10.1007/s42107-018-0046-z
-
Sayyad, A. S., & Ghugal, Y. M. (2020). On the buckling analysis of functionally graded sandwich beams using a unified beam theory. Journal of Applied and Computational Mechanics, 51(2), 443–453. https://doi.org/10.22059/jcamech.2020.310180.557
-
Shinde, B. M., & Sayyad, A. S. (2017). A quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams. Mechanics of Advanced Composite
-
Jape, A. S., & Sayyad, A. S. (2022). Bending of functionally graded nanobeams using hyperbolic nonlocal theory. IOP Conference Series: Materials Science and Engineering, 1236, 012008. https://doi.org/10.1088/1757-899X/1236/1/012008
-
Amara, R., Bennai, R., Ait Atmane, H., Nebab, M., & Hadji, L. (2025). Hygrothermal effect of bio-inspired helicoid laminate plate for strengthening damaged RC beam. Mechanics of Advanced Materials and Structures, 32(14), 3319–3336. https://doi.org/10.1080/15376494.2024.2392623
-
Djebbour, K. D., Nebab, M., Ait Atmane, H., Alghanmi, R. A., Hadji, L., & Bennai, R. (2025). An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations. Mechanics of Advanced Materials and Structures, 32(5), 893–909. https://doi.org/10.1080/15376494.2024.2356728
-
Hadji, L., Plevris, V., Madan, R., & Ait Atmane, H. (2024). Multi-directional functionally graded sandwich plates: Buckling and free vibration analysis with refined plate models under various boundary conditions. Computation, 12(4), 65. https://doi.org/10.3390/computation12040065
-
Saad, M., Ould Larbi, L., Hadji, L., Ait Atmane, H., & Madan, R. (2025). Sinusoidal shear deformation theory for dynamic analysis of FG plates under various boundary conditions: Influence of micromechanical models. Advances in Computational Design, 10(3), 251–273. https://doi.org/10.12989/acd.2025.10.3.251
-
Tosic, G., Bogdanovic, G., Cukanovic, D., & Radakovic, A. (2022). Functionally graded materials in transport vehicles – overview, fabrication, application, modeling. In IOP Conference Series: Materials Science and Engineering, 1271. Proceedings of IX International Congress Motor Vehicles and Motors (MVM 2022), October 13–14, 2022, Kragujevac, Serbia.