Research Article
BibTex RIS Cite

Gamma radiation shielding behaviour of B2O3-MnO2-PbO glasses with low density using a Monte Carlo method

Year 2026, Volume: 2 Issue: 1, 12 - 22, 20.02.2026
https://izlik.org/JA47JN36RR

Abstract

B2O3-MnO2-PbO glass formations with various B2O3 and PbO molar compositions were investigated for determining shielding properties. FLUKA codes was employed to compute mass attenuation coefficients (μ_m) for the glasses at the 133Ba (0.356 MeV), 137Cs (0.662 MeV) and 60Co (1.173 and 1.330 MeV) photon peaks. The simulated μ_m were compared to Phy-X/PSD and WinXCOM programs. To verify the present code, the computed μ_ms were cross-checked with MNCPX and the XCOM database for the test glass system. The largest deviation between FLUKA and MNCPX were found to be 1.83%, whereas the deviation between the FLUKA and XCOM was 0.37%. Moreover, μ_m findings from FLUKA showed a satisfactory agreement with XCOM and Phy-X/PSD with differences below 1% for the primarily studied glasses (BMLs). It is concluded that BML1 has better attenuation behaviour than those with lower amounts of PbO in terms of μ_m and Zeff for energies below 1 MeV.

References

  • IAEA brief for policymakers, International Atomic Energy Agency (IAEA), 2018/1. https://www.iaea.org/sites/default/files/18/03/radioisotopes-support-industrial-processes.pdf. Accessed 26 February 2025.
  • Radioisotopes Used in Devices by Industry, U.S. Environmental Protection Agency, EPS’s web archive. https://archive.epa.gov/radiation/source-reduction-management/web/html/radionuclides.html. Accessed 26 February 2025.
  • Singh, B., Singh, J., & Kaur, A. (2013). Applications of Radioisotopes in Agriculture, IJBBR (4).
  • Glubrecht, H. IAEA bulletin, Vol 19, no.6. https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull19-6/19605093847.pdf. Accessed 26 February 2025.
  • Beyer, G. J. (2007). Isotopes in medicine, Physics for medical imaging applications. NATO Science series, 267-271 (Springer Dordrecht, 2007).
  • Mitchell, J. S. (1951) Practical aspects of radioactive isotopes in relation to medical treatment, 747-757 (BMJ, 1951).
  • Adelstein, S. J., & Manning, F. J. (Eds.). (1995). Isotopes for Medicine and the Life Sciences, 4th edition. 144 pages (Washington DC: The National Academies Press, 1995).
  • Steele, J. H., & Engel, R. E. (1992). Radiation processing of food, 1522-1529 JAVMA (201).
  • R.W. Durante, Food processors requirements met by radiation processing, Radiat. Phys. Chem. Oxf. Engl. https://doi.org/10.1016/S0969-806X(01)00515-1 (2002).
  • T. Kaur, J. Sharma, T. Singh, Thickness optimization of Sn–Pb alloys for experimentally measuring mass attenuation coefficients, Nucl. Energy Technol. 10.1016/j.nucet.2017.02.001 (2017).
  • Rajeshwari Mirji, Blaise Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiat. Phys. Chem. 135 (2017).
  • S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaOe-Na2O glasses system, Process. Eng. 32 (2012).
  • K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems, Radiat. Phys. Chem. 96 (2014).
  • A.E. Ersundu, M. Büyükyıldız, M.E. Çelikbilek, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy, 10.1016/j.pnucene.2017.10.008 (2018).
  • K. Kirdsiri, J. Kaewkhao, N. Chanthima et al., Comparative study of silicate glasses containing Bi2O3, PbO and BaO: radiation shielding and optical properties, Ann. Nucl. Energy 38, (2011).
  • M.G. Dong, M.I. Sayyed, G. Lakshminarayana G. et al., Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. Non-Cryst. Solids 468, (2017).
  • M.I. Sayyed, S.I. Qashou, Z.Y. Khattari, Radiation shielding competence of newly developed TeO2-WO3 glasses, J. Alloy. Comp. 696, (2017)
  • R. Divina, G. Sathiyapriya, K. Marimuthu et al., Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non-Cryst. Solids, https://doi.org/10.1016/j.jnoncrysol.2020.120269 (2020).
  • A.H. Almuqrin, M.I. Sayyed, A. Kumar et al., Optical, mechanical properties and gamma ray shielding behavior of TeO2-Bi2O3-PbO-MgO-B2O3 glasses using Fluka simulation code, Opt. Mater., https://doi.org/10.1016/j.optmat.2021.110900 (2021).
  • M.M. Ismail, H.A. Abo-Mosallam, A.G. Darwish, Synthesis, mechanical, and dielectric properties of BaO–CdO–PbO–CeO2–B2O3 glass system through Sm2O3 doping for advanced dielectric applications, Ceram. Int., https://doi.org/10.1016/j.ceramint.2025.03.267 (2025).
  • F.A. Abdel-Wahab, A.M. Fayad, M. Abdel-Baki et al., Role of non-bridging oxygen defect in the ionic conductivity and associated oxygen trap centers in lead-borate oxide glass: Effect of structural substitution of PbO for Ag2O and Li2O modifiers, J. Non-Cryst. Solids, https://doi.org/10.1016/j.jnoncrysol.2018.06.033 (2018).
  • R. El-Mallawany, E. Kavaz, U. Perişanoğlu et al., New shielding ZnO-PbO-TeO2 glasses, Optik, https://doi.org/10.1016/j.ijleo.2021.167483 (2021).
  • M. Gülmen, Y. Bükte, Investigating Bi2O3-B2O3-BaO Glass Systems for Radiation Shielding Applications, J. Phy. Sci. https://doi.org/10.21315/jps2022.33.1.4 (2022).
  • M.T. Rinke, H. Eckert, The mixed network former effect in glasses: solid-state NMR and XPS structural studies of the glass system (Na2O)(x)(BPO4)(1–x), PCCP 14, (2011).
  • M.S. Al-Buriahi, Z.A. Alrowaili, Canel Eke et al.,Optical and radiation shielding studies on tellurite glass system containing ZnO and Na2O, Optik, 257, 168821; https://doi.org/10.1016/j.ijleo.2022.168821 (2022).
  • B. Subedi, J. Paudel, T.R. Lamichhane, Gamma-ray, fast neutron and ion shielding characteristics of low-density and high-entropy Mg–Al–Ti–V–Cr–Fe–Zr–Nb alloy systems using Phy-X/PSD and SRIM programs, Heliyon https://doi.org/10.1016/j.heliyon.2023.e17725 (2023).
  • G. Hugo, C. Ahdida, D. Bozzato et al., Latest Fluka developments. EPJ Nucl. Sci. https://doi.org/10.1051/epjn/2024023 (2024).
  • S. Thirumaran, N. Karthikeyan, Structural Elucidation of Some Borate Glass Specimen by Employing Ultrasonic and Spectroscopic Studies, Journal of Ceramics, http://dx.doi.org/10.1155/2013/485317 (2013).
  • H.G. Pfeiffer, H.A. Liebhafsky, The Origins of Beer’s Law, Journal of Chemical Education doi: 10.1021/ed028p123 (1951).
  • D.F. Jackson, D.J. Hawkes, X-ray attenuation coefficients of elements and mixtures, Review Section of Physics Letters, Physics Report, doi:10.1016/0370-1573(81)90014-4 North-Holland Publishing Company (1981).
  • E.B. Podgorsak, Radiation Physics for Medical Physicists. 2nd edition. (Springer Verlag Berlin Heidelberg, 2010).
  • H.O. Tekin, A.M. Shams, E. Kavaz et al., The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications, Mater. Res. Express, 10.1088/2053-1591/ab4cb5 (2019).
  • G. Lakshminarayana, Y. Elmahroug, A. Kumar, M.G. Dong et al., TeO2–B2O3–ZnO–La2O3 glasses: γ-ray and neutron attenuation characteristics analysis by WinXCOM program, MCNP5, Geant4, and Penelope simulation codes, Ceramics International Part B https://doi.org/10.1016/j.ceramint.2020.03.235 (2020).
  • E. Kavaz, H.O. Tekin, G. Kilic, et al., Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability, J. Non-Cryst. Solids, https://doi.org/10.1016/j.jnoncrysol.2020.120169 (2020).
  • M.A. Mohammad, M. Bektasoğlu, Comparative study of two bismuth–borate glasses in terms of gamma shielding parameters at medical diagnostic energies and neutron shielding characteristics, Mater.
  • S.R. Manohara, S.M. Hanagodimath, K.S. Thind et al., On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1keV, Nucl. Instrum. Methods. Phys. Res., B., https://doi.org/10.1016/j.nimb.2008.06.034 (2008).
  • M.J. Berger, J.H. Hubbel, XCOM: photon cross sections database, web version 1.2 Originally Published as NBSIR 87-3597 XCOM: Photon CrossSections on a Personal Computer, Available from: 〈http://physics.nist.gov/xcom〉 Washington, DC. (1999).
  • R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma Ray Shielding Study of Barium–Bismuth–Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program and Available Experimental Data. Nuclear Engineering and Technology, 49 (2017).
  • S.P. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data. Annals of Nuclear Energy, 55 (2013).
  • M.I. Sayyed, Z.Y. Khattari, A. Kumar et al., Radiation shielding parameters of BaO–Nb2O5–P2O5 glass system using MCNP5 code and XCOM software, Mater. Res. Express 5 (2018).
  • E. Şakar, Ö.F. Özpolat, B. Alım et al., Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. Oxf. Engl. https://doi.org/10.1016/j.radphyschem.2019.108496 (2020).
  • A. Ferrari, J. Ranft, P.R. Sala et al., FLUKA: A multi-particle transport code (A Program version 2005). CERN-2005-10. INFN/TC_05/11. SLAC-R-773. Cern
  • T.T. Böhlen, F. Cerutti, M.P.W. Chin et al., The FLUKA Code: Developments and Challenges for High Energy and Medical Applications, Nuclear Data Sheets, 120 https://doi.org/10.1016/j.nds.2014.07.049 (2014).
  • A.M. Madbouly, O.I. Sallam, A.M. Shams et al., Experimental and FLUKA evaluation on structure and optical properties and γ-radiation shielding capacity of bismuth borophosphate glasses, Prog. Nucl. Energy. https://doi.org/10.1016/j.pnucene.2022.104219 (2022).
  • A. El-Taher, H.M.H. Zakaly, R. El-Sharkawy et al., Effect of bismuth oxide nanoparticles on the radiation shielding of bentonite clay using Fluka modelling calculations and simulation studying, Prog. Nucl. Energy 0149-1970 https://doi.org/10.1016/j.pnucene.2022.104494 (2023).
  • A. El-Taher, H.M.H. Zakaly, E.A. Allam et al., Fluka and microshield simulation assessment of nuclear radiation attenuation by binary nanocomposites, Radiat. Phys. Chem. Oxf. Engl. https://doi.org/10.1016/j.radphyschem.2024.112409 (2025).
  • M.A.M. Uosif, A.M.S. Issa, A. Ene et al., Optimal composition for radiation shielding in BTCu-x glass systems as determined by FLUKA simulation, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.06.107 (2023).
  • Y.S. Rammah, M.I. Sayyed, A.A. Ali et al., Optical properties and gamma-shielding features of bismuth borate glasses, Appl. Phys. A https://doi.org/10.1007/s00339-018-2252-7 (2018).
  • A. Sharma, M.I. Sayyed, O. Agar et al, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results Phys., 13, 2211-3797, https://doi.org/10.1016/j.rinp.2019.102199 (2019).
  • H.O. Tekin, L.R.P. Kassab, S.A.M. Issa et al, Structural and physical characterization study on synthesized tellurite (TeO2) and germanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS, Opt. Mater., 110, https://doi.org/10.1016/j.optmat.2020.110533 (2020).
  • M. Gülmen. Gamma radiation shielding behavior of B2O3-MnO2-PbO glass system with low density: A Fluka code calculations, Mendeley Data, V2, 10.17632/nwzwg99nr5.2 (2025).
There are 51 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Research Article
Authors

Mergim Gülmen 0000-0001-6446-4371

Submission Date December 19, 2025
Acceptance Date January 19, 2026
Publication Date February 20, 2026
IZ https://izlik.org/JA47JN36RR
Published in Issue Year 2026 Volume: 2 Issue: 1

Cite

APA Gülmen, M. (2026). Gamma radiation shielding behaviour of B2O3-MnO2-PbO glasses with low density using a Monte Carlo method. Journal of Ceramics and Composites, 2(1), 12-22. https://izlik.org/JA47JN36RR