BibTex RIS Cite

Human embryonic stem cells and microenvironment

Year 2014, , 486 - 495, 01.09.2014
https://doi.org/10.5799/ahinjs.01.2014.03.0446

Abstract

Human embryonic stem cells (hESCs) possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3): 486-495

References

  • 1. Thomson J, Itskovitz-Eldor J, Shapiro S, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147.
  • 2. Reubinoff B, Pera M, Fong C, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399-404.
  • 3. Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000;6:88-95.
  • 4. Stojkovic M, Lako M, Stojkovic P, et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 2004;22:790-797.
  • 5. Przyborski S. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005;23:1242-1250.
  • 6. Mitsiadis T, Barrandon O, Rochat A, et al. Stem cell niches in mammals. Exp Cell Res 2007;313:3377-3385.
  • 7. Yamashita YM, Yuan H, Cheng J, Hunt, AJ. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2010;2:a001313.
  • 8. Naveiras O, Daley G. Stem cells and their niche: a matter of fate. Cell Mol Life Sci 2006;63:760-766.
  • 9. Moore K, Lemischka I. Stem cells and their Niches. Science 2006;311:1880-1885.
  • 10. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25.
  • 11. Sato N, Sanjuan I, Heke M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 2003;260:404-413.
  • 12. Cowan C, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004;250:1353-1356.
  • 13. Xu C, Inokuma M, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971-974.
  • 14. Zeng X, Miura T, Luo Y, et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 2004;22:292-312.
  • 15. Skottman H, Mikkola M, Lundin K, et al. Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 2005;23:1343-1356.
  • 16. Klimanskaya I, Chung Y, Meisner L, et al. Human embryonic stem cells derived without feeder cells. Lancet 2005;365:1636-1641.
  • 17. Ng H, Surani M. The transcriptional and signalling networks of pluripotency. Nat Cell Biol 2011;13:490-496.
  • 18. Pan G, Chang Z, Schöler H, Pei, D. Stem cell pluripotency and transcription factor Oct4. Cell Res 2002;12:321- 329.
  • 19. Spagnoli F, Hemmati-Brivanlou A. Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr Opin Genet Dev 2006;16:469-475.
  • 20. Okita K, Yamanaka S. Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 2006;1:103-111.
  • 21. Stewart R, Stojkovic M, Lako M. Mechanisms of selfrenewal in human embryonic stem cells. Eur J Cancer 2006;42:1257-1272.
  • 22. Wang Q, Fang Z, Jin F, et al. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells 2005;23:1221-1227.
  • 23. Amit M. Clonally Derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227:271- 278.
  • 24. Ilic D. Culture of human embryonic stem cells and the extracellular matrix microenvironment. Regen Med 2006;1:95-101.
  • 25. Martin M, Muotri A, Gage F and Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005;11:228-232.
  • 26. Park J. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod 2003;69:2007-2014.
  • 27. Heng B, Liu H and Cao, T. Feeder cell density--a key parameter in human embryonic stem cell culture. In Vitro Cell Dev Biol Anim 2004;40:255-257.
  • 28. Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells. Biol Reprod 2003;68:2150-2156.
  • 29. Choo A, Padmanabhan J, Chin A and Oh, S. Expansion of pluripotent human embryonic stem cells on human feeders. Biotechnol Bioeng 2004;88:321-331.
  • 30. Miyamoto K, Hayashi K, Suzuki T, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells 2004;22:433-440.
  • 31. Richards M, Fong C, Chan W, et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20:933-936.
  • 32. Lai D, Cheng W, Liu T, et al. Optimization of culture conditions to support undifferentiated growth of human embryonic stem cells. Cell Reprogram 2010;12:305-314.
  • 33. Fletcher J, Ferrier P, Gardner J, et al. Variations in humanized and defined culture conditions supporting derivation of new human embryonic stem cell lines. Cloning Stem Cells 2006;8:319-334.
  • 34. Zhan X, Hill C, Brayton CF and Shamblott, MJ. Cells derived from human umbilical cord blood support the long-term growth of undifferentiated human embryonic stem cells. Cloning Stem Cells 2008;10:513-522.
  • 35. Park Y, Choi I, Lee S, et al. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev 2010;19:1713-1722.
  • 36. Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003;18:1404-1409.
  • 37. Inzunza J, Gertow K, Strömberg M, et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 2005;23:544-549.
  • 38. Lee J, Lee J, Park J, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 2005;72:42-49.
  • 39. Ellerström C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 2006;24:2170-2176.
  • 40. McKay T, Camarasa M, Iskender B, et al. Human feeder cell line for derivation and culture of hESc/hiPSc. Stem Cell Res 2011;7:154-162.
  • 41. Unger C, Gao S, Cohen M, et al. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Hum Reprod 2009;24:2567-2581.
  • 42. Xu C, Jiang J, Sottile V, et al. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 2004;22:972- 980.
  • 43. Stojkovic P, Lako M, Stewart R, et al. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 2005;23:306-314.
  • 44. Yoo SJ, Yoon BS, Kim JM, et al. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp Mol Med 2005;37:399-407.
  • 45. Choo A, Ngo A, Ding V, et al. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions. Methods Cell Biol 2008;86:15-28.
  • 46. Amit M, Shariki C, Margulets V and Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004;70:837-845.
  • 47. Ludwig T, Levenstein M, Jones J, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24:185-187.
  • 48. Fu X, Toh W, Liu H, et al. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Eng Part C Methods 2010;16:719-733.
  • 49. Abraham S, Sheridan S, Miller B, Rao, R. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnol Prog 2010;26:1126-1134
  • 50. Meng G, Liu S, Li X, Krawetz, R, Rancourt, D. Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev 2010;19:547-556.
  • 51. Searle B, Turner M, Nesvizhskii, A. Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 2008;7:245-253.
  • 52. Lim J and Bodnar, A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2002;2:1187-1203.
  • 53. Prowse A, McQuade L, Bryant K, et al. A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 2005;5:978-989.
  • 54. Prowse A, McQuade L, Bryant K, et al. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 2007;6:3796-3807.
  • 55. Fu X, Toh W, Liu H, et al. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 2011;17:927-937.
  • 56. Kleinman H, McGarvey M, Liotta L, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982;21:6188-6193.
  • 57. Miyazaki T, Futaki S, Hasegawa K, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008;375:27-32.
  • 58. Rodin S, Domogatskaya A, Ström S, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 2010;28:611- 615.
  • 59. Braam S, Zeinstra L, Litjens S, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008;26:2257-2265.
  • 60. Prowse A, Doran M, Cooper-White J, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 2010;31:8281-8288.
  • 61. Baxter M, Camarasa M, Bates N, et al. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res 2009;3:28-38.
  • 62. Soteriou D, Iskender B, Byron A, et al. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J Biol Chem 2013;288:18716-1873.
  • 63. Rajala K, Lindroos B, Hussein S, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 2010;5:e10246.
  • 64. Jones M, Chu C, Pendleton J, et al. Proliferation and pluripotency of human embryonic stem cells maintained on type I collagen. Stem Cells Dev 2010;19:1923-1935.
  • 65. Adams J. Molecular organisation of cell-matrix contacts: essential multiprotein assemblies in cell and tissue function. Expert Rev Mol Med 2002;4:1-24.
  • 66. Reddig P and Juliano R. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 2005;24:425-439.
  • 67. Boudreau N, Jones P. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J 1999;339(pt 3):481-488.
  • 68. Humphries M. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol 1996;8:632-640.
  • 69. Stupack D, Cheresh D. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002;115(Pt 19):3729-3738.
  • 70. Hughes P, Pfaff M. Integrin affinity modulation. Trends Cell Biol 1998;8:359-364.
  • 71. Kim C, Ye F and Ginsberg, M. Regulation of integrin activation. Annu Rev Cell Dev Biol 2011;27:321-345.
  • 72. O’Toole T, Katagiri Y, Faull R, et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 1994;124:1047-1059.
  • 73. Carman, C and Springer, T. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 2003;15:547-556.
  • 74. Margadant C, Monsuur H, Norman J and A, S. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 2011;23:607-614.
  • 75. Geiger B, Bershadsky A, Pankov R, Yamada, K. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001;2:793-805.
  • 76. Vuoristo S, Virtanen I, Takkunen M, et al. Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 2009;13(8B):2622-2633.
  • 77. Hongisto H, Vuoristo S, Mikhailova A, et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 2012;8:97-108.
  • 78. Rowland T, Miller L, Blaschke A, et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 2010;19:1231- 1240.
  • 79. Meng Y, Eshghi S, Li Y, et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB 2010;24:1056-1065.
  • 80. Chen S, Fitzgerald W, Zimmerberg J, et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007;25:553-561.
  • 81. Oxley C, Anthis N, Lowe E, et al. An integrin phosphorylation switch: the effect of beta3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem 2008;283:5420-5426.
  • 82. Mulrooney J, Hong T and Grabel L. Serine 785 phosphorylation of the beta1 cytoplasmic domain modulates beta1A-integrin-dependent functions. J Cell Sci 2001;114(Pt 13):2525-2533.
  • 83. Abaskharoun M, Bellemare M, Lau E, Margolis R. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 2010;1327:6-15.
  • 84. Calalb M, Polte T, Hanks S. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 1995;15:954-963.
  • 85. Harrison, S. Variation on an Src-like theme. Cell 2003;112:737-740.
  • 86. Armstrong L, Hughes O, Yung S, et al. The role of PI3K/ AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006;15:1894- 1913.
  • 87. Watanabe S, Umehara H, Murayama K, et al. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 2006;25:2697-2707.
  • 88. Singh A, Reynolds D, Cliff T, et al. Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3- Regulated Switch that Controls the Balance between Self-Renewal and Differentiation. Cell Stem Cell 2012;10:312-326.
  • 89. Park J, Ryu J and Han H. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 2011;226:267-275.
  • 90. Bendall S, Stewart M, Menendez P, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007;448 (7157):1015-1021.
  • 91. Dravid G, Ye Z, Hammond H, et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005;23:1489-1501.
  • 92. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 2009;136:1339-1349.
  • 93. Li J, Wang G, Wang C, et al. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007;75:299-307.
  • 94. Steiner D, Khaner H, Cohen M, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 2010;28:361- 364.
  • 95. Wang X, Lin G, Martins-Taylor K, et al. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem 2009;284:34054-34064.
  • 96. Pera M, Tam, P. Extrinsic regulation of pluripotent stem cells. Nature 2010;465:713-720

İnsan embriyonik kök hücreleri ve mikroçevre

Year 2014, , 486 - 495, 01.09.2014
https://doi.org/10.5799/ahinjs.01.2014.03.0446

Abstract

İnsan embriyonik kök hücreleri (iEKH) pluripotent özellikleri ile sınırsız çoğalıp kendi kendilerini yenileyebilirken, üç embriyonik tabakayı temsil eden hücrelere farklılaşabilme yetenekleri ile rejeneratif tıp alanında büyük ilgi uyandırmışlardır. Genellikle mitotik olarak inaktive edilmiş fare besleyici hücreleri ile büyütülseler de, türler arası kontaminasyon riskini ortadan kaldırmak için insan kökenli besleyici hücrelerin kullanıldığı in vitro kültür sistemleri de bulunmaktadır. Son dönemde geliştirilen kültürlerde iEKH\'nin besleyici hücre ile birebir temasına gerek olmadığı, ancak hücre tutunmasını sağlayan substratın varlığının uzun süreli, etkin in vitro iEKH\'nin kültürü için gerekli olduğu ileri sürülmüştür. Bu substrat çoğunlukla in vivo mikroçevrenin de bir parçası olan ekstrasellüler matriks moleküllerinden biri ya da birkaçının karışımı olabilmektedir. İEKH biyolojisinde ekstrasellüler matriks moleküleriyle etkileşim, hücrelerin kısa süreli ve geçici in vivo mikroçevre ile interaksiyonu nedeniyle şimdiye kadar ihmal edilen bir alan olarak kalmıştır. Ancak ekstraselüler matriks molekülleriyle oluşturulacak bir in vitro kültür sistemi, besleyici hücrelerin kullanıldığı geleneksel kültür sistemlerine nazaran güvenli bir alternatif oluşturarak, ‘İyi Üretim Uygulamaları (GMP)\' standardında tedaviye yönelik iEKH\'nin üretiminin yolunu açacaktır. Bu nedenle iEKH\'nin geniş çaplı üretiminin, iş yükünü en aza indirecek şekilde yapılabilmesi için gerekli in vitro kültür standartlarının oluşturulması, iEKH\'nin ekstraselüler matriks molekülleriyle ilişkilerinin araştırılmasına bağlıdır. Böylelikle hem pluripotent özelliği kontrol eden mekanizmalar hakkında önemli bilgi edinilirken hem de gelecekteki tedaviye yönelik olası uygulamalarda kullanılacak iEKH\'nin yönlendirilmiş farklılaşmasını sağlayan sinyal yolakları tanımlanabilecektir.

References

  • 1. Thomson J, Itskovitz-Eldor J, Shapiro S, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147.
  • 2. Reubinoff B, Pera M, Fong C, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399-404.
  • 3. Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000;6:88-95.
  • 4. Stojkovic M, Lako M, Stojkovic P, et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 2004;22:790-797.
  • 5. Przyborski S. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005;23:1242-1250.
  • 6. Mitsiadis T, Barrandon O, Rochat A, et al. Stem cell niches in mammals. Exp Cell Res 2007;313:3377-3385.
  • 7. Yamashita YM, Yuan H, Cheng J, Hunt, AJ. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2010;2:a001313.
  • 8. Naveiras O, Daley G. Stem cells and their niche: a matter of fate. Cell Mol Life Sci 2006;63:760-766.
  • 9. Moore K, Lemischka I. Stem cells and their Niches. Science 2006;311:1880-1885.
  • 10. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25.
  • 11. Sato N, Sanjuan I, Heke M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 2003;260:404-413.
  • 12. Cowan C, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004;250:1353-1356.
  • 13. Xu C, Inokuma M, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971-974.
  • 14. Zeng X, Miura T, Luo Y, et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 2004;22:292-312.
  • 15. Skottman H, Mikkola M, Lundin K, et al. Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 2005;23:1343-1356.
  • 16. Klimanskaya I, Chung Y, Meisner L, et al. Human embryonic stem cells derived without feeder cells. Lancet 2005;365:1636-1641.
  • 17. Ng H, Surani M. The transcriptional and signalling networks of pluripotency. Nat Cell Biol 2011;13:490-496.
  • 18. Pan G, Chang Z, Schöler H, Pei, D. Stem cell pluripotency and transcription factor Oct4. Cell Res 2002;12:321- 329.
  • 19. Spagnoli F, Hemmati-Brivanlou A. Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr Opin Genet Dev 2006;16:469-475.
  • 20. Okita K, Yamanaka S. Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 2006;1:103-111.
  • 21. Stewart R, Stojkovic M, Lako M. Mechanisms of selfrenewal in human embryonic stem cells. Eur J Cancer 2006;42:1257-1272.
  • 22. Wang Q, Fang Z, Jin F, et al. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells 2005;23:1221-1227.
  • 23. Amit M. Clonally Derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227:271- 278.
  • 24. Ilic D. Culture of human embryonic stem cells and the extracellular matrix microenvironment. Regen Med 2006;1:95-101.
  • 25. Martin M, Muotri A, Gage F and Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005;11:228-232.
  • 26. Park J. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod 2003;69:2007-2014.
  • 27. Heng B, Liu H and Cao, T. Feeder cell density--a key parameter in human embryonic stem cell culture. In Vitro Cell Dev Biol Anim 2004;40:255-257.
  • 28. Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells. Biol Reprod 2003;68:2150-2156.
  • 29. Choo A, Padmanabhan J, Chin A and Oh, S. Expansion of pluripotent human embryonic stem cells on human feeders. Biotechnol Bioeng 2004;88:321-331.
  • 30. Miyamoto K, Hayashi K, Suzuki T, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells 2004;22:433-440.
  • 31. Richards M, Fong C, Chan W, et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20:933-936.
  • 32. Lai D, Cheng W, Liu T, et al. Optimization of culture conditions to support undifferentiated growth of human embryonic stem cells. Cell Reprogram 2010;12:305-314.
  • 33. Fletcher J, Ferrier P, Gardner J, et al. Variations in humanized and defined culture conditions supporting derivation of new human embryonic stem cell lines. Cloning Stem Cells 2006;8:319-334.
  • 34. Zhan X, Hill C, Brayton CF and Shamblott, MJ. Cells derived from human umbilical cord blood support the long-term growth of undifferentiated human embryonic stem cells. Cloning Stem Cells 2008;10:513-522.
  • 35. Park Y, Choi I, Lee S, et al. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev 2010;19:1713-1722.
  • 36. Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003;18:1404-1409.
  • 37. Inzunza J, Gertow K, Strömberg M, et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 2005;23:544-549.
  • 38. Lee J, Lee J, Park J, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 2005;72:42-49.
  • 39. Ellerström C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 2006;24:2170-2176.
  • 40. McKay T, Camarasa M, Iskender B, et al. Human feeder cell line for derivation and culture of hESc/hiPSc. Stem Cell Res 2011;7:154-162.
  • 41. Unger C, Gao S, Cohen M, et al. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Hum Reprod 2009;24:2567-2581.
  • 42. Xu C, Jiang J, Sottile V, et al. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 2004;22:972- 980.
  • 43. Stojkovic P, Lako M, Stewart R, et al. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 2005;23:306-314.
  • 44. Yoo SJ, Yoon BS, Kim JM, et al. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp Mol Med 2005;37:399-407.
  • 45. Choo A, Ngo A, Ding V, et al. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions. Methods Cell Biol 2008;86:15-28.
  • 46. Amit M, Shariki C, Margulets V and Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004;70:837-845.
  • 47. Ludwig T, Levenstein M, Jones J, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24:185-187.
  • 48. Fu X, Toh W, Liu H, et al. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Eng Part C Methods 2010;16:719-733.
  • 49. Abraham S, Sheridan S, Miller B, Rao, R. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnol Prog 2010;26:1126-1134
  • 50. Meng G, Liu S, Li X, Krawetz, R, Rancourt, D. Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev 2010;19:547-556.
  • 51. Searle B, Turner M, Nesvizhskii, A. Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 2008;7:245-253.
  • 52. Lim J and Bodnar, A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2002;2:1187-1203.
  • 53. Prowse A, McQuade L, Bryant K, et al. A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 2005;5:978-989.
  • 54. Prowse A, McQuade L, Bryant K, et al. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 2007;6:3796-3807.
  • 55. Fu X, Toh W, Liu H, et al. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 2011;17:927-937.
  • 56. Kleinman H, McGarvey M, Liotta L, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982;21:6188-6193.
  • 57. Miyazaki T, Futaki S, Hasegawa K, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008;375:27-32.
  • 58. Rodin S, Domogatskaya A, Ström S, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 2010;28:611- 615.
  • 59. Braam S, Zeinstra L, Litjens S, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008;26:2257-2265.
  • 60. Prowse A, Doran M, Cooper-White J, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 2010;31:8281-8288.
  • 61. Baxter M, Camarasa M, Bates N, et al. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res 2009;3:28-38.
  • 62. Soteriou D, Iskender B, Byron A, et al. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J Biol Chem 2013;288:18716-1873.
  • 63. Rajala K, Lindroos B, Hussein S, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 2010;5:e10246.
  • 64. Jones M, Chu C, Pendleton J, et al. Proliferation and pluripotency of human embryonic stem cells maintained on type I collagen. Stem Cells Dev 2010;19:1923-1935.
  • 65. Adams J. Molecular organisation of cell-matrix contacts: essential multiprotein assemblies in cell and tissue function. Expert Rev Mol Med 2002;4:1-24.
  • 66. Reddig P and Juliano R. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 2005;24:425-439.
  • 67. Boudreau N, Jones P. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J 1999;339(pt 3):481-488.
  • 68. Humphries M. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol 1996;8:632-640.
  • 69. Stupack D, Cheresh D. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002;115(Pt 19):3729-3738.
  • 70. Hughes P, Pfaff M. Integrin affinity modulation. Trends Cell Biol 1998;8:359-364.
  • 71. Kim C, Ye F and Ginsberg, M. Regulation of integrin activation. Annu Rev Cell Dev Biol 2011;27:321-345.
  • 72. O’Toole T, Katagiri Y, Faull R, et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 1994;124:1047-1059.
  • 73. Carman, C and Springer, T. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 2003;15:547-556.
  • 74. Margadant C, Monsuur H, Norman J and A, S. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 2011;23:607-614.
  • 75. Geiger B, Bershadsky A, Pankov R, Yamada, K. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001;2:793-805.
  • 76. Vuoristo S, Virtanen I, Takkunen M, et al. Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 2009;13(8B):2622-2633.
  • 77. Hongisto H, Vuoristo S, Mikhailova A, et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 2012;8:97-108.
  • 78. Rowland T, Miller L, Blaschke A, et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 2010;19:1231- 1240.
  • 79. Meng Y, Eshghi S, Li Y, et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB 2010;24:1056-1065.
  • 80. Chen S, Fitzgerald W, Zimmerberg J, et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007;25:553-561.
  • 81. Oxley C, Anthis N, Lowe E, et al. An integrin phosphorylation switch: the effect of beta3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem 2008;283:5420-5426.
  • 82. Mulrooney J, Hong T and Grabel L. Serine 785 phosphorylation of the beta1 cytoplasmic domain modulates beta1A-integrin-dependent functions. J Cell Sci 2001;114(Pt 13):2525-2533.
  • 83. Abaskharoun M, Bellemare M, Lau E, Margolis R. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 2010;1327:6-15.
  • 84. Calalb M, Polte T, Hanks S. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 1995;15:954-963.
  • 85. Harrison, S. Variation on an Src-like theme. Cell 2003;112:737-740.
  • 86. Armstrong L, Hughes O, Yung S, et al. The role of PI3K/ AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006;15:1894- 1913.
  • 87. Watanabe S, Umehara H, Murayama K, et al. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 2006;25:2697-2707.
  • 88. Singh A, Reynolds D, Cliff T, et al. Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3- Regulated Switch that Controls the Balance between Self-Renewal and Differentiation. Cell Stem Cell 2012;10:312-326.
  • 89. Park J, Ryu J and Han H. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 2011;226:267-275.
  • 90. Bendall S, Stewart M, Menendez P, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007;448 (7157):1015-1021.
  • 91. Dravid G, Ye Z, Hammond H, et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005;23:1489-1501.
  • 92. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 2009;136:1339-1349.
  • 93. Li J, Wang G, Wang C, et al. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007;75:299-307.
  • 94. Steiner D, Khaner H, Cohen M, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 2010;28:361- 364.
  • 95. Wang X, Lin G, Martins-Taylor K, et al. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem 2009;284:34054-34064.
  • 96. Pera M, Tam, P. Extrinsic regulation of pluripotent stem cells. Nature 2010;465:713-720
There are 96 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Banu İskender This is me

Kenan İzgi This is me

Salih Şanlıoğlu This is me

Halit Canatan This is me

Publication Date September 1, 2014
Published in Issue Year 2014

Cite

APA İskender, B., İzgi, K., Şanlıoğlu, S., Canatan, H. (2014). İnsan embriyonik kök hücreleri ve mikroçevre. Journal of Clinical and Experimental Investigations, 5(3), 486-495. https://doi.org/10.5799/ahinjs.01.2014.03.0446
AMA İskender B, İzgi K, Şanlıoğlu S, Canatan H. İnsan embriyonik kök hücreleri ve mikroçevre. J Clin Exp Invest. September 2014;5(3):486-495. doi:10.5799/ahinjs.01.2014.03.0446
Chicago İskender, Banu, Kenan İzgi, Salih Şanlıoğlu, and Halit Canatan. “İnsan Embriyonik kök hücreleri Ve mikroçevre”. Journal of Clinical and Experimental Investigations 5, no. 3 (September 2014): 486-95. https://doi.org/10.5799/ahinjs.01.2014.03.0446.
EndNote İskender B, İzgi K, Şanlıoğlu S, Canatan H (September 1, 2014) İnsan embriyonik kök hücreleri ve mikroçevre. Journal of Clinical and Experimental Investigations 5 3 486–495.
IEEE B. İskender, K. İzgi, S. Şanlıoğlu, and H. Canatan, “İnsan embriyonik kök hücreleri ve mikroçevre”, J Clin Exp Invest, vol. 5, no. 3, pp. 486–495, 2014, doi: 10.5799/ahinjs.01.2014.03.0446.
ISNAD İskender, Banu et al. “İnsan Embriyonik kök hücreleri Ve mikroçevre”. Journal of Clinical and Experimental Investigations 5/3 (September 2014), 486-495. https://doi.org/10.5799/ahinjs.01.2014.03.0446.
JAMA İskender B, İzgi K, Şanlıoğlu S, Canatan H. İnsan embriyonik kök hücreleri ve mikroçevre. J Clin Exp Invest. 2014;5:486–495.
MLA İskender, Banu et al. “İnsan Embriyonik kök hücreleri Ve mikroçevre”. Journal of Clinical and Experimental Investigations, vol. 5, no. 3, 2014, pp. 486-95, doi:10.5799/ahinjs.01.2014.03.0446.
Vancouver İskender B, İzgi K, Şanlıoğlu S, Canatan H. İnsan embriyonik kök hücreleri ve mikroçevre. J Clin Exp Invest. 2014;5(3):486-95.