Clinical Research
BibTex RIS Cite

A Late Complication of Covid-19 Pandemic: Rickets

Year 2023, Volume: 23 Issue: 1, 58 - 62, 27.03.2023
https://doi.org/10.26650/jchild.2023.1173597

Abstract

Objective: Sunlight is the most important source of vitamin D. Obesity is an important risk factor for rickets. During pandemic periods, such as the Covid 19 pandemic, children cannot be exposed to enough sunlight due to the closure of schools, curfews, and other limitations. They are prone to obesity due to malnutrition and inactivity. This study was conducted to show that rickets can develop in children during a pandemic period and to draw attention to the problem. Materials and Methods: Patients who visited a polyclinic-emergency clinic in the 3-month period before pandemic restrictions started (in the early stages of the pandemic) and patients who visited in the 3-month period when there were restrictions (in the late period of the pandemic) were evaluated for rickets. The frequency of rickets along with calcium, phosphorus, alkaline phosphatase, parathormone and vitamin D levels were compared. Result: While 49/100,000 cases of hypocalcemia were detected in the pre-pandemic period, 123/100,000 cases of hypocalcemia were detected during the pandemic period. Compared to the pre-pandemic period, a 2.5-fold increase was detected in hypocalcemia during the pandemic period. Conclusion: There may be an increase in cases of rickets during periods of long-term restrictions, such as in pandemic periods. During these periods, children should be evaluated for rickets, preventive measures should be taken, and those who develop a disease should be treated.

References

  • 1. Gentile C, Chiarelli F. Rickets in Children: An Update. Biomedicines 2021;9(7). google scholar
  • 2. Holick MF. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer Res 2016;36(3):1345-56. google scholar
  • 3. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 2017;18(2):153-65. google scholar
  • 4. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol 2013;5(1):51-108. google scholar
  • 5. https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 [10.09.22] google scholar
  • 6. https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-covid-19/basics-covid-19.html. [10.09.22] google scholar
  • 7. https://www.cdc.gov/museum/timeline/covid19.html. [10.09.22] google scholar
  • 8. Bressan S, Gallo E, Tirelli F, Gregori D, Da Dalt L. Lockdown: more domestic accidents than COVID-19 in children. Arch Dis Child 2021;106(2):e3. google scholar
  • 9. Chaffee BW, Cheng J, Couch ET, Hoeft KS, Halpern-Felsher B. Adolescents’ Substance Use and Physical Activity Before and During the COVID-19 Pandemic. JAMA Pediatr 2021;175(7):715-22. google scholar
  • 10. Lelak KA, Vohra V, Neuman MI, Farooqi A, Toce MS, Sethuraman U. COVID-19 and Pediatric Ingestions. Pediatrics 2021;148(1). google scholar
  • 11. Woolford SJ, Sidell M, Li X, Else V, Young DR, Resnicow K, et al. Changes in Body Mass Index Among Children and Adolescents During the COVID-19 Pandemic. Jama 2021;326(14):1434-6. google scholar
  • 12. Nagata JM, Cortez CA, Cattle CJ, Ganson KT, Iyer P, Bibbins-Domingo K, et al. Screen Time Use Among US Adolescents During the COVID-19 Pandemic: Findings From the Adolescent Brain Cognitive Development (ABCD) Study. JAMA Pediatr 2022;176(1):94-6. google scholar
  • 13. Jarnig G, Jaunig J, van Poppel MNM. Association of COVID-19 Mitigation Measures With Changes in Cardiorespiratory Fitness and Body Mass Index Among Children Aged 7 to 10 Years in Austria. JAMA Netw Open 2021;4(8):e2121675. google scholar
  • 14. Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol 2020;8(7):570. google scholar
  • 15. Panfili FM, Roversi M, D’Argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinol Invest 2021;44(1):27-35. google scholar
  • 16. Hadizadeh F. Supplementation with vitamin D in the COVID-19 pandemic? Nutr Rev 2021;79(2):200-8. google scholar
  • 17. Shah K, Saxena D, Mavalankar D. Vitamin D supplementation, COVID-19 and disease severity: a meta-analysis. Qjm 2021;114(3):175-81. google scholar
  • 18. Simm PJ, Munns CF, Jefferies CA, Wheeler BJ. Editorial: Childhood Rickets-New Developments in Epidemiology, Prevention, and Treatment. Front Endocrinol (Lausanne) 2020;11:621734. google scholar
  • 19. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab 2016;101(2):394-415. google scholar
  • 20. Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM. Rickets. Nat Rev Dis Primers 2017;3:17101. google scholar
  • 21. Fischer PR, Thacher TD, Pettifor JM. Pediatric vitamin D and calcium nutrition in developing countries. Rev Endocr Metab Disord 2008;9(3):181-92. google scholar
  • 22. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72(3):690-3. google scholar
  • 23. https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/obesity-management-and-treatment-during-covid-19/.[10.09.22] google scholar
  • 24. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4-8. google scholar
  • 25. Thomas MK, Lloyd-Jones DM, Thadhani RI, Shaw AC, Deraska DJ, Kitch BT, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998;338(12):777-83. google scholar
  • 26. Bouillon R, Carmeliet G. Vitamin D insufficiency: Definition, diagnosis and management. Best Pract Res Clin Endocrinol Metab 2018;32(5):669-84. google scholar
  • 27. Urrutia-Pereira M, Solé D. [Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood]. Rev Paul Pediatr 2015;33(1):104-13. google scholar

Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm

Year 2023, Volume: 23 Issue: 1, 58 - 62, 27.03.2023
https://doi.org/10.26650/jchild.2023.1173597

Abstract

Amaç: D vitamini çeşitli gıdalardan ve deride bulunan 7-dehidrokolesterolden güneş ışığı etkisiyle elde edilir. Obezite raşitizm için önemli bir risk faktörüdür. Covid 19 gibi pandemi dönemlerinde okulların kapalı olması, sokağa çıkma yasakları ve diğer sınırlamalar nedeniyle çocuklar yeterince güneş ışığına maruz kalamamaktadırlar. Dengesiz beslenme ve hareketsizlik nedeniyle obeziteye yatkın olmaktadırlar. Bu çalışma pandemi döneminde çocuklarda raşitizm gelişebileceğini göstermek ve bu duruma dikkat çekmek amacıyla yapılmıştır. Gereç ve Yöntem: Covid-19 pandemisinin erken dönemlerinde kısıtlamaların olmadığı ilk 3 aylık dönemdeki poliklinik ve acil başvurusu olan hastalar ile pandeminin geç döneminde kısıtlamaların olduğu üç aylık dönemdeki hastalar raşitizm yönünden değerlendirildi. Raşitizm sıklığı, kalsiyum, fosfor, alkalen fosfataz, parathormon ve vitamin D seviyeleri kıyaslandı. Bulgular: Pandemi kısıtlamaları öncesi dönemde 49 / 100 000 hastada hipokalsemi saptanırken, pandemi döneminde 123 /100 000 hipokalsemi vakası tespit edilmiştir. Hipokalsemi vakalarında pandemi kısıtlamalarından önceki döneme göre pandemi döneminde 2,5 katlık artış tespit edilmiştir. Sonuç: Pandemi boyunca olduğu gibi uzun süreli kısıtlamaların uygulandığı dönemlerde raşitizm vakalarında artış olabilmektedir. Bu dönemlerde çocuklar raşitizm yönünden değerlendirilmeli, önleyici tedbirler alınmalı ve hastalık tablosu gelişenler tedavi edilmelidir.

References

  • 1. Gentile C, Chiarelli F. Rickets in Children: An Update. Biomedicines 2021;9(7). google scholar
  • 2. Holick MF. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer Res 2016;36(3):1345-56. google scholar
  • 3. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 2017;18(2):153-65. google scholar
  • 4. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol 2013;5(1):51-108. google scholar
  • 5. https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 [10.09.22] google scholar
  • 6. https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-covid-19/basics-covid-19.html. [10.09.22] google scholar
  • 7. https://www.cdc.gov/museum/timeline/covid19.html. [10.09.22] google scholar
  • 8. Bressan S, Gallo E, Tirelli F, Gregori D, Da Dalt L. Lockdown: more domestic accidents than COVID-19 in children. Arch Dis Child 2021;106(2):e3. google scholar
  • 9. Chaffee BW, Cheng J, Couch ET, Hoeft KS, Halpern-Felsher B. Adolescents’ Substance Use and Physical Activity Before and During the COVID-19 Pandemic. JAMA Pediatr 2021;175(7):715-22. google scholar
  • 10. Lelak KA, Vohra V, Neuman MI, Farooqi A, Toce MS, Sethuraman U. COVID-19 and Pediatric Ingestions. Pediatrics 2021;148(1). google scholar
  • 11. Woolford SJ, Sidell M, Li X, Else V, Young DR, Resnicow K, et al. Changes in Body Mass Index Among Children and Adolescents During the COVID-19 Pandemic. Jama 2021;326(14):1434-6. google scholar
  • 12. Nagata JM, Cortez CA, Cattle CJ, Ganson KT, Iyer P, Bibbins-Domingo K, et al. Screen Time Use Among US Adolescents During the COVID-19 Pandemic: Findings From the Adolescent Brain Cognitive Development (ABCD) Study. JAMA Pediatr 2022;176(1):94-6. google scholar
  • 13. Jarnig G, Jaunig J, van Poppel MNM. Association of COVID-19 Mitigation Measures With Changes in Cardiorespiratory Fitness and Body Mass Index Among Children Aged 7 to 10 Years in Austria. JAMA Netw Open 2021;4(8):e2121675. google scholar
  • 14. Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol 2020;8(7):570. google scholar
  • 15. Panfili FM, Roversi M, D’Argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinol Invest 2021;44(1):27-35. google scholar
  • 16. Hadizadeh F. Supplementation with vitamin D in the COVID-19 pandemic? Nutr Rev 2021;79(2):200-8. google scholar
  • 17. Shah K, Saxena D, Mavalankar D. Vitamin D supplementation, COVID-19 and disease severity: a meta-analysis. Qjm 2021;114(3):175-81. google scholar
  • 18. Simm PJ, Munns CF, Jefferies CA, Wheeler BJ. Editorial: Childhood Rickets-New Developments in Epidemiology, Prevention, and Treatment. Front Endocrinol (Lausanne) 2020;11:621734. google scholar
  • 19. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab 2016;101(2):394-415. google scholar
  • 20. Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM. Rickets. Nat Rev Dis Primers 2017;3:17101. google scholar
  • 21. Fischer PR, Thacher TD, Pettifor JM. Pediatric vitamin D and calcium nutrition in developing countries. Rev Endocr Metab Disord 2008;9(3):181-92. google scholar
  • 22. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72(3):690-3. google scholar
  • 23. https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/obesity-management-and-treatment-during-covid-19/.[10.09.22] google scholar
  • 24. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4-8. google scholar
  • 25. Thomas MK, Lloyd-Jones DM, Thadhani RI, Shaw AC, Deraska DJ, Kitch BT, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998;338(12):777-83. google scholar
  • 26. Bouillon R, Carmeliet G. Vitamin D insufficiency: Definition, diagnosis and management. Best Pract Res Clin Endocrinol Metab 2018;32(5):669-84. google scholar
  • 27. Urrutia-Pereira M, Solé D. [Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood]. Rev Paul Pediatr 2015;33(1):104-13. google scholar
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Paediatrics
Journal Section Research Articles
Authors

Şeyma Nur Karataş 0000-0001-7284-979X

Eren Çağan 0000-0001-5640-9196

Publication Date March 27, 2023
Published in Issue Year 2023 Volume: 23 Issue: 1

Cite

APA Karataş, Ş. N., & Çağan, E. (2023). Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm. Çocuk Dergisi, 23(1), 58-62. https://doi.org/10.26650/jchild.2023.1173597
AMA Karataş ŞN, Çağan E. Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm. Çocuk Dergisi. March 2023;23(1):58-62. doi:10.26650/jchild.2023.1173597
Chicago Karataş, Şeyma Nur, and Eren Çağan. “Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm”. Çocuk Dergisi 23, no. 1 (March 2023): 58-62. https://doi.org/10.26650/jchild.2023.1173597.
EndNote Karataş ŞN, Çağan E (March 1, 2023) Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm. Çocuk Dergisi 23 1 58–62.
IEEE Ş. N. Karataş and E. Çağan, “Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm”, Çocuk Dergisi, vol. 23, no. 1, pp. 58–62, 2023, doi: 10.26650/jchild.2023.1173597.
ISNAD Karataş, Şeyma Nur - Çağan, Eren. “Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm”. Çocuk Dergisi 23/1 (March 2023), 58-62. https://doi.org/10.26650/jchild.2023.1173597.
JAMA Karataş ŞN, Çağan E. Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm. Çocuk Dergisi. 2023;23:58–62.
MLA Karataş, Şeyma Nur and Eren Çağan. “Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm”. Çocuk Dergisi, vol. 23, no. 1, 2023, pp. 58-62, doi:10.26650/jchild.2023.1173597.
Vancouver Karataş ŞN, Çağan E. Covid-19 Pandemisinin Geç Dönem Bir Komplikasyonu: Raşitizm. Çocuk Dergisi. 2023;23(1):58-62.