Research Article
BibTex RIS Cite

Computational Design Informed by Natural Systems

Year 2020, Volume: 1 Issue: 3, 1 - 16, 30.09.2020

Abstract

Animate and inanimate matters in nature are evaluated within systems’ unity. Natural systems represent order and balance defined by computation. Mathematicians, biologists, material scientists and professionals from other fields investigate natural systems for problem-solving. Although nature has been used as a reference since historical periods, there are improper uses on how to integrate nature efficiently into the design process. The term biomimicry is used today by transcending its meaning from imitating nature towards learning from its intelligence. There is a necessity that architectural design students develop their skills on computation and evaluate natural systems from an analytical point of view to apply their finding in creative design solutions. This research is about an elective course on biomimicry developed for undergraduate architectural design education. The methodology consists of three stages, including investigation of the natural systems (1), the abstraction of the natural systems and extracting the system parameters (2), implementing the parameters in the computational design model (3). The proposed study was implemented from 2018 to 2020 into the student projects, of which outputs are discussed and grouped under four categories, including organization-, performance-, process- and motion-based computation. By examining the results, it is determined that the students gained skills in computational design and their awareness related to the natural systems were increased.

Supporting Institution

Yok

Project Number

Yok

Thanks

Acknowledgements The studies were applied at Özyeğin University, Faculty of Architecture and Design, from the year 2018 to 2020. Special thanks to the students for their contribution to the course (Student names from S.1 to S.7 respectively: Benson Sanga, Tamer Kumaş, Özgün Şimşek, Burak Can Çatan, Ayşe Yasemin Şenalp, Doğa Çakmakçı, Mert Aydın).

References

  • Benyus, J. (1997). Biomimicry: Innovation Inspired by Nature, William Morrow and Company, New York.
  • Brugnaro, G., Baharlou, E., Vasey, L., and Menges, A. (2016). Robotic softness: An adaptive robotic fabrication process for woven structures. In: 36th the association for computer aided design in architecture (ACADIA) conference proceedings, Ann Arbor (pp. 154–163).
  • Castriotto , C., Giantini, G. and Celani, G. (2019). Biomimetic Reciprocal Frames A design investigation on bird’s nests and spatial structures, eCAADe 37 / SIGraDi 23 Conference Proceedings, Volume 1, 613-620.
  • Celani, G. and Vaz, C., E., V. (2012). CAD Scripting And Visual Programming Languages For Implementing Computational Design Concepts:A Comparison From A Pedagogical Point Of View, International Journal of Architectural Computing, issue 01, volume 10, 121-137.
  • Çolakoğlu, B. and Yazar, T. (2007). Mimarlık Eğitiminde Algoritma: Stüdyo Uygulamaları, Journal of the Faculty of Engineering and Architecture of Gazi University, vol 22, no 3, 379-385.
  • Kolarevich, B., and K. Klinger. (2008). Manufacturing Material Effects Rethinking Design and Making Architecture, 196–198. New York: Routledge.
  • Krieg, O. D., Mihaylov, B., Schwinn, T., Reichert, S., and Menges, A. (2012). Computational design of robotically manufactured plate structures based on biomimetic design principles derived from clypeasteroida, digital physicality, 30th education and research in computer aided architectural design in europe (eCAADe) conference proceedings (pp. 531–540). Prague.
  • Kvan, T., Mark,E., Oxman, R. and Martins, B. (2004) Ditching the Dinosaur: Redefining the Role of Digital Media in Education. International Journal of Design Computing.
  • Mandelbrot, B., B. (1977) The Fractal Geometry Of Nature, W. H. Freeman And Company, New York.
  • Navarro-Mateu, D. and Cocho-Bermejo, A. (2020). Evo-Devo Strategies for Generative Architecture: Colour-Based Patterns in Polygon Meshes, Biomimetics, 5, 23; doi:10.3390/biomimetics5020023.
  • Oxman, N. (2009). Material-based design computation: Tiling behavior. ReForm: Building a Better Tomorrow, Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture. Chicago, pp. 122-129.
  • Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge, models and medium. Design Studies, 29, 99-120.
  • Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52(2017), 4–39.
  • Reitman, W. (1964). Heuristic decision procedures, open constraints, and the structure of ill-defined problems, in: Human Judgement and Optimality EdsMShelly, John Wiley, New York, pp. 282–315.
  • Schwinn, T, Krieg, O. D, Menges, A, Mihaylov, B and Reichert, S (2012). Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication, Proceedings of the 32nd Annual Conference of the ACADIA.
  • Shiffman, D. (2012). The Nature of Code. Chapter 8. ISBN-13: 978-0985930806.
  • Suwa, M., Gero, J., and Purcell, T. (1999). Unexpected discoveries and S-inventions of design requirements: a key to creative designs, in: Computational Models of Creative Design IV.
  • Selçuk, S., A. and Sorguç, A., G. (2009). Exploring Complex Forms in Nature Through Mathematical Modeling: a Case on Turritella Terebra, Proceedings of eCAADe 27.
  • Terzidis, K. (2006). Algorithmic architecture. Oxford: Elsevier.
  • URL 1 <https://processing.org/examples/mandelbrot.html>
  • URL 2 <https://processing.org/examples/pentigree.html>
  • URL 3 <https://www.nationalgeographic.org/encyclopedia/dune/#coastal-dunes>
  • URL 4 <https://oceanservice.noaa.gov/facts/brain-coral.html>
  • URL 5 <https://garden.org/plants/view/117109/Spiral-Aloe-Aloe-polyphylla/>
  • URL 6 <https://www.britannica.com/plant/rose-plant>
  • URL 7 <https://www.britannica.com/science/tendril>
  • URL 8 < https://www.britannica.com/animal/arachnid>

Doğal Sistemler Tarafından Bilgilendirilen Hesaplamalı Tasarım

Year 2020, Volume: 1 Issue: 3, 1 - 16, 30.09.2020

Abstract

Doğada canlı ve cansız varlıkların tümü sistem bütünlüğü içinde değerlendirilmektedir. Doğal sistemler hesaplama ile tanımlanan düzen ve dengeyi temsil eder. Matematikçiler, biyologlar, malzeme bilimcileri ve farklı alanlardan profesyoneller problem çözme amaçlı olarak doğal sistemleri araştırmaktadır. Doğa, tarihsel dönemlerden beri tasarım sürecinde referans olarak kullanılsa da, doğanın tasarım süreciyle verimli bir şekilde nasıl bütünleştirileceğine dair yanlış kullanımlar bulunmaktadır. Biyomimesis terimi, günümüzde doğayı taklit etme anlamını aşarak, doğanın zekasından öğrenme anlamında kullanılmaktadır. Mimari tasarım öğrencilerinin hesaplama becerilerini geliştirerek, doğal sistemleri analitik bakış açısıyla inceleme ve bulguları yaratıcı tasarım çözümlerinde uygulama ihtiyacı bulunmaktadır. Bu araştırma, mimarlık lisans eğitiminde uygulanmak üzere geliştirilmiş biyomimesis konulu bir seçmeli ders üzerinedir. Yöntem, doğal sistemlerin incelenmesi (1), doğal sistemlerin soyutlanması ve sistem parametrelerinin çıkarılması (2), parametrelerin hesaplamalı tasarım modelinde uygulanması (3) dahil olmak üzere üç aşamadan oluşmaktadır. Önerilen çalışma, 2018 yılından 2020 yılına dek öğrenci projelerinde uygulanmış olup, çıktılar organizasyon-, performans-, süreç- ve hareket-tabanlı hesaplama olmak üzere dört grupta incelenmiştir. Sonuçlar irdelendiğinde, öğrencilerin hesaplamalı tasarım konusunda beceri kazandıkları ve doğada bulunan sistemler hakkında farkındalıklarının arttığı belirlenmiştir.

Project Number

Yok

References

  • Benyus, J. (1997). Biomimicry: Innovation Inspired by Nature, William Morrow and Company, New York.
  • Brugnaro, G., Baharlou, E., Vasey, L., and Menges, A. (2016). Robotic softness: An adaptive robotic fabrication process for woven structures. In: 36th the association for computer aided design in architecture (ACADIA) conference proceedings, Ann Arbor (pp. 154–163).
  • Castriotto , C., Giantini, G. and Celani, G. (2019). Biomimetic Reciprocal Frames A design investigation on bird’s nests and spatial structures, eCAADe 37 / SIGraDi 23 Conference Proceedings, Volume 1, 613-620.
  • Celani, G. and Vaz, C., E., V. (2012). CAD Scripting And Visual Programming Languages For Implementing Computational Design Concepts:A Comparison From A Pedagogical Point Of View, International Journal of Architectural Computing, issue 01, volume 10, 121-137.
  • Çolakoğlu, B. and Yazar, T. (2007). Mimarlık Eğitiminde Algoritma: Stüdyo Uygulamaları, Journal of the Faculty of Engineering and Architecture of Gazi University, vol 22, no 3, 379-385.
  • Kolarevich, B., and K. Klinger. (2008). Manufacturing Material Effects Rethinking Design and Making Architecture, 196–198. New York: Routledge.
  • Krieg, O. D., Mihaylov, B., Schwinn, T., Reichert, S., and Menges, A. (2012). Computational design of robotically manufactured plate structures based on biomimetic design principles derived from clypeasteroida, digital physicality, 30th education and research in computer aided architectural design in europe (eCAADe) conference proceedings (pp. 531–540). Prague.
  • Kvan, T., Mark,E., Oxman, R. and Martins, B. (2004) Ditching the Dinosaur: Redefining the Role of Digital Media in Education. International Journal of Design Computing.
  • Mandelbrot, B., B. (1977) The Fractal Geometry Of Nature, W. H. Freeman And Company, New York.
  • Navarro-Mateu, D. and Cocho-Bermejo, A. (2020). Evo-Devo Strategies for Generative Architecture: Colour-Based Patterns in Polygon Meshes, Biomimetics, 5, 23; doi:10.3390/biomimetics5020023.
  • Oxman, N. (2009). Material-based design computation: Tiling behavior. ReForm: Building a Better Tomorrow, Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture. Chicago, pp. 122-129.
  • Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge, models and medium. Design Studies, 29, 99-120.
  • Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52(2017), 4–39.
  • Reitman, W. (1964). Heuristic decision procedures, open constraints, and the structure of ill-defined problems, in: Human Judgement and Optimality EdsMShelly, John Wiley, New York, pp. 282–315.
  • Schwinn, T, Krieg, O. D, Menges, A, Mihaylov, B and Reichert, S (2012). Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication, Proceedings of the 32nd Annual Conference of the ACADIA.
  • Shiffman, D. (2012). The Nature of Code. Chapter 8. ISBN-13: 978-0985930806.
  • Suwa, M., Gero, J., and Purcell, T. (1999). Unexpected discoveries and S-inventions of design requirements: a key to creative designs, in: Computational Models of Creative Design IV.
  • Selçuk, S., A. and Sorguç, A., G. (2009). Exploring Complex Forms in Nature Through Mathematical Modeling: a Case on Turritella Terebra, Proceedings of eCAADe 27.
  • Terzidis, K. (2006). Algorithmic architecture. Oxford: Elsevier.
  • URL 1 <https://processing.org/examples/mandelbrot.html>
  • URL 2 <https://processing.org/examples/pentigree.html>
  • URL 3 <https://www.nationalgeographic.org/encyclopedia/dune/#coastal-dunes>
  • URL 4 <https://oceanservice.noaa.gov/facts/brain-coral.html>
  • URL 5 <https://garden.org/plants/view/117109/Spiral-Aloe-Aloe-polyphylla/>
  • URL 6 <https://www.britannica.com/plant/rose-plant>
  • URL 7 <https://www.britannica.com/science/tendril>
  • URL 8 < https://www.britannica.com/animal/arachnid>
There are 27 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Articles
Authors

Sevil Yazıcı

Project Number Yok
Publication Date September 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 3

Cite

APA Yazıcı, S. (2020). Computational Design Informed by Natural Systems. Journal of Computational Design, 1(3), 1-16.

88x31.png

The papers published in JCoDe are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.