Research Article
BibTex RIS Cite

Interaktif ve Karmaşık Mimari Sistemler Üzerinden Toleransı Yeniden Düşünmek

Year 2025, Volume: 6 Issue: 2, 211 - 234, 30.09.2025
https://doi.org/10.53710/jcode.1728523

Abstract

Bu çalışma, mimarlıkta tolerans kavramını hesaplamalı tasarım bağlamında yeniden tanımlayarak, onu yalnızca üretim hatalarına karşı bırakılan teknik bir pay olmaktan çıkarıp; değişkenlik, etkileşim ve bağlamsal duyarlılık temelinde üretken bir tasarım stratejisine dönüştürmektedir. Tarihsel olarak kesinlik ve kontrolle ilişkilendirilen tolerans, burada sistem davranışı yoluyla açık uçlu mekânsal senaryolar üretme kapasitesine sahip etkin bir parametre olarak ele alınmaktadır (Kolarevic, 2014).
Bu dönüşümü araştırmak amacıyla, Rhino 3D ortamında interaktif duvarlar üreten, karmaşık iki özel Python scripti geliştirilmiştir. Her iki script, çekim noktalarına (attractor) tepki veren çift yüzeyli sistemler üretmekte; yüzey geometrileri ekstrüzyon ve açıklık değerleri üzerinden farklılaşmaktadır. Bu değişkenler, tolerans kavramının hesaplanabilir biçimde yeniden tanımlanmasını sağlamaktadır. Ortak parametrelerle çalışan modeller, tepki mantıkları açısından farklılık gösterir: Kod 1 yüzeyler arasında karşıtlık ve gerilim oluşturarak kontrast temelli bir mekânsal deneyim üretirken; Kod 2, senkronize ve geçirgen yapısıyla süreklilik ve birlik hissi sunmaktadır.
Karşılaştırmalı analiz, toleransın parametrik sistemlerde yalnızca biçimsel değil, aynı zamanda davranışsal bir çerçeve olarak da işlev gördüğünü ortaya koymuştur. Her iki model, zamansal değişkenlik üzerinden gündelik yaşamın karmaşıklığını simüle eden etkileşimli senaryolar geliştirmektedir.
Sonuç olarak, çalışma toleransı, algoritmik kontrol ile gerçek dünya belirsizlikleri arasında köprü kuran üretken ve performatif bir tasarım aracı olarak yeniden konumlandırmakta; mimari yüzeyleri optimize edilmiş formlar yerine sürekli dönüşen, yaşayan kompleks sistemler haline getirmektedir.

References

  • Banihashemi, S., Assadimoghadam, A., Hajirasouli, A., LeNguyen, K., & Mohandes, S. R. (2024). Parametric design in construction: a new paradigm for quality management and defect reduction. International Journal of Construction Management, 1-18. https://doi.org/10.1080/15623599.2024.2447653
  • Banihashemi, S., Tabadkani, A., & Hosseini, M. R. (2018). Integration of parametric design into modular coordination: A construction waste reduction workflow. Automation in Construction, 88, 1-12. https://doi.org/10.1016/j.autcon.2017.12.026
  • Bates, S., & Sergison, J. (1999). Teaching and learning: The practice of architecture. Academy Editions. Bundy, A.(2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69. https://www.pure.ed.ac.uk/ws/portalfiles/portal/408398/Computational_Thinking_is_Pervasive.pdf
  • De Certeau, M. (2008). The practice of everyday life (S. Sert, Trans.). Dost Kitabevi Publications (Original work published 1980).
  • Fox, M., & Kemp, M. (2009). Interactive architecture. Princeton Architectural Press.
  • Jaskiewicz, T. J. (2013). Towards a methodology for complex adaptive interactive architecture [Doctoral dissertation, Technische Universiteit Delft]. TU Delft Repository. https://repository.tudelft.nl/islandora/object/uuid:a81827c5-7d65-4cc7-9fab-20fab3a14c30
  • Kolarevic, B. (2014). Why we need architecture of tolerance. Architectural Design, 84(1), 128–132. https://doi.org/10.1002/ad.1712
  • Kas, O. (2004). Towards a new kind of building: A designer’s guide for nonstandard architecture [Doctoral dissertation, Technische Universiteit Delft]. TU Delft Repository. https://repository.tudelft.nl/islandora/object/uuid:291a8d50-c45a-4e20-8ad8-b9d6426d3f05
  • McCullough, M. (2004). Digital ground: Architecture, pervasive computing, and environmental knowing. MIT Press.
  • McVicar, M. T. (2016). Precision in architectural production [Doctoral dissertation, Cardiff University]. ORCA Cardiff University Repository. https://orca.cardiff.ac.uk/id/eprint/97224/
  • Moloney, J. (2009). Kinetic architectural skins and the computational sublime. Leonardo, 42(1), 65–70. https://doi.org/10.1162/LEON.2009.42.1.65
  • Nasir, O., & Kamal, M. A. (2023). Exploring the role of parametric architecture in building design: An inclusive approach. Facta Universitatis, Series: Architecture and Civil Engineering, 21(1), 95–114. https://doi.org/10.2298/fuace230114007n
  • Novak, M. (2004, May 5). Marcos Novak interview [Interview by A. Ludovico]. Neural. http://www.neural.it/english/marcosnovak.htm
  • Oosterhuis, K. (2007). Towards a new kind of building: A designer's guide for non-standard architecture. NAi Publishers.
  • Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52, 4–39. https://doi.org/10.1016/j.destud.2017.06.001
  • Park, J., Moere, A. V., & Tomitsch, M. (2011). The role of physicality in the design of ambient information systems. In P. Campos et al. (Eds.), Human-Computer Interaction – INTERACT 2011 (pp. 151–167). Springer. https://doi.org/10.1007/978-3-642-23774-4_11
  • Tabadkani, A., Banihashemi, S., & Hosseini, M. R. (2018). Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. Building Simulation, 11(4), 663–676. https://doi.org/10.1007/s12273-018-0433-0 Venturi, R. (2005). Complexity and contradiction in architecture (E. Şener, Trans.). Şevki Vanlı Mimarlık Vakfı Publications. (Original work published 1966)
  • Wiener, N. (2019). Cybernetics or control and communication in the animal and the machine. MIT Press (Original work published 1948).
  • Yi, Y. K. (2019). Building facade multi-objective optimization for daylight and aesthetical perception. Building and Environment, 156, 178–190. https://doi.org/10.1016/j.buildenv.2019.04.002
  • Yücel, G., & Ökten, A. (2020). Space and body: Spatial experience in everyday life. İletişim Publications.

Rethinking Tolerance through Interactive and Complex Architectural Systems

Year 2025, Volume: 6 Issue: 2, 211 - 234, 30.09.2025
https://doi.org/10.53710/jcode.1728523

Abstract

This study reconsiders the concept of tolerance within the context of computational design, repositioning it not merely as a margin for error in production processes, but as an interactive, contextual, and uncertainty-driven design strategy. Historically associated with engineering precision, tolerance has evolved in computational design environments into a framework that embraces variability, system-level adaptability, and behavioral diversity (Kolarevic, 2014). Rather than pursuing precision as an end goal, this shift enables tolerance to function as a generative principle within dynamic systems.
Within this framework, the aim of the research is to model tolerance as a reconfigurable design parameter that enables interactive spatial variation, and to rethink architectural surfaces in accordance with this variability. The study involves the development of two custom Python scripts within the Rhino 3D environment, which generate dual-wall parametric systems responsive to attractor points. These surfaces are topologically differentiated through extrusion and aperture values, and each unit is semantically encoded via a four-bit logic system—translating spatial behavior into computationally readable data.
The comparative structure of Code 1 and Code 2 reveals how systemic responses transform design strategies. Code 1 produces oppositional reactions to attractors, generating spatial contrast between the walls. This design logic aligns with Venturi’s (2005) proposition that contrast and imperfection serve as sources of architectural meaning. In contrast, Code 2 synchronizes the behavior of both surfaces: as they move away from the attractors, their extrusion values increase uniformly. This behavior resonates with Moloney’s (2009) notion of kinetic systems, offering a model in which coordinated transformation replaces static form.
Both scripts illustrate how tolerance can function not only as a technical allowance but as an adaptive, behavioral, and interactive parameter embedded within system logic. While Code 1 generates spatial tension through contrasting wall responses, Code 2 produces a porous, unified field of interaction. McVicar’s (2016) definition of tolerance as a “range of opportunity” is embodied here through the ability of the same input to yield divergent spatial outcomes. Additionally, the micro-variations embedded into each unit allow for dynamic feedback responses that echo Wiener’s (2019) cybernetic models.
In conclusion, this study reframes tolerance as a productive variable within parametric modeling, capable of mediating between computational control and real-world complexity. The surface variations generated by the scripts move beyond fixed geometries, creating dynamic spatial scenarios informed by data and context. In doing so, the concept of tolerance becomes not a constraint to be minimized, but a mechanism for enabling open-ended, temporally evolving design systems.

Ultimately, this research contributes to a broader understanding of computational design by proposing a model in which uncertainty, interaction, and systemic adaptability become core architectural values. By encoding tolerance as a formal and behavioral operator, the study opens new avenues for designing data-rich, responsive, and performative environments. This approach positions architectural surfaces not as endpoints of optimization, but as active participants within complex, living systems of spatial negotiation.

References

  • Banihashemi, S., Assadimoghadam, A., Hajirasouli, A., LeNguyen, K., & Mohandes, S. R. (2024). Parametric design in construction: a new paradigm for quality management and defect reduction. International Journal of Construction Management, 1-18. https://doi.org/10.1080/15623599.2024.2447653
  • Banihashemi, S., Tabadkani, A., & Hosseini, M. R. (2018). Integration of parametric design into modular coordination: A construction waste reduction workflow. Automation in Construction, 88, 1-12. https://doi.org/10.1016/j.autcon.2017.12.026
  • Bates, S., & Sergison, J. (1999). Teaching and learning: The practice of architecture. Academy Editions. Bundy, A.(2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69. https://www.pure.ed.ac.uk/ws/portalfiles/portal/408398/Computational_Thinking_is_Pervasive.pdf
  • De Certeau, M. (2008). The practice of everyday life (S. Sert, Trans.). Dost Kitabevi Publications (Original work published 1980).
  • Fox, M., & Kemp, M. (2009). Interactive architecture. Princeton Architectural Press.
  • Jaskiewicz, T. J. (2013). Towards a methodology for complex adaptive interactive architecture [Doctoral dissertation, Technische Universiteit Delft]. TU Delft Repository. https://repository.tudelft.nl/islandora/object/uuid:a81827c5-7d65-4cc7-9fab-20fab3a14c30
  • Kolarevic, B. (2014). Why we need architecture of tolerance. Architectural Design, 84(1), 128–132. https://doi.org/10.1002/ad.1712
  • Kas, O. (2004). Towards a new kind of building: A designer’s guide for nonstandard architecture [Doctoral dissertation, Technische Universiteit Delft]. TU Delft Repository. https://repository.tudelft.nl/islandora/object/uuid:291a8d50-c45a-4e20-8ad8-b9d6426d3f05
  • McCullough, M. (2004). Digital ground: Architecture, pervasive computing, and environmental knowing. MIT Press.
  • McVicar, M. T. (2016). Precision in architectural production [Doctoral dissertation, Cardiff University]. ORCA Cardiff University Repository. https://orca.cardiff.ac.uk/id/eprint/97224/
  • Moloney, J. (2009). Kinetic architectural skins and the computational sublime. Leonardo, 42(1), 65–70. https://doi.org/10.1162/LEON.2009.42.1.65
  • Nasir, O., & Kamal, M. A. (2023). Exploring the role of parametric architecture in building design: An inclusive approach. Facta Universitatis, Series: Architecture and Civil Engineering, 21(1), 95–114. https://doi.org/10.2298/fuace230114007n
  • Novak, M. (2004, May 5). Marcos Novak interview [Interview by A. Ludovico]. Neural. http://www.neural.it/english/marcosnovak.htm
  • Oosterhuis, K. (2007). Towards a new kind of building: A designer's guide for non-standard architecture. NAi Publishers.
  • Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52, 4–39. https://doi.org/10.1016/j.destud.2017.06.001
  • Park, J., Moere, A. V., & Tomitsch, M. (2011). The role of physicality in the design of ambient information systems. In P. Campos et al. (Eds.), Human-Computer Interaction – INTERACT 2011 (pp. 151–167). Springer. https://doi.org/10.1007/978-3-642-23774-4_11
  • Tabadkani, A., Banihashemi, S., & Hosseini, M. R. (2018). Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. Building Simulation, 11(4), 663–676. https://doi.org/10.1007/s12273-018-0433-0 Venturi, R. (2005). Complexity and contradiction in architecture (E. Şener, Trans.). Şevki Vanlı Mimarlık Vakfı Publications. (Original work published 1966)
  • Wiener, N. (2019). Cybernetics or control and communication in the animal and the machine. MIT Press (Original work published 1948).
  • Yi, Y. K. (2019). Building facade multi-objective optimization for daylight and aesthetical perception. Building and Environment, 156, 178–190. https://doi.org/10.1016/j.buildenv.2019.04.002
  • Yücel, G., & Ökten, A. (2020). Space and body: Spatial experience in everyday life. İletişim Publications.
There are 20 citations in total.

Details

Primary Language English
Subjects Computational Complexity and Computability, Architectural Computing and Visualisation Methods, Architectural Design
Journal Section Research Article
Authors

Zehra Delerel

Funda Tan Bayram

Publication Date September 30, 2025
Submission Date June 30, 2025
Acceptance Date September 26, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Delerel, Z., & Tan Bayram, F. (2025). Rethinking Tolerance through Interactive and Complex Architectural Systems. Journal of Computational Design, 6(2), 211-234. https://doi.org/10.53710/jcode.1728523

88x31.png

The papers published in JCoDe are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.