Research Article
BibTex RIS Cite

Year 2025, Issue: 4, 1 - 19, 09.01.2026
https://doi.org/10.26650/JODA.1660477

Abstract

References

  • Agbehadji, I. E., Abayomi, A., Bui, K. H. N., Millham, R. C., & Freeman, E. (2022). Nature inspired search method and custom waste object detection and classification model for smart waste bin. Sensors, 22(16), 6176. https://doi.org/10.3390/s22166176 google scholar
  • Aschemann-Witzel, J., De Hooge, I., Amani, P., Bech-Larsen, T., & Oostindjer, M. (2015). Consumer-related food waste: Causes and potential for action. Sustainability, 7(6), 6457–6477. https://doi.org/10.3390/su7066457 google scholar
  • Bisong, E. (2019). Google colaboratory. In Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7 google scholar
  • Food and Agriculture Organization of the United Nations. (2011). Global food losses and food waste – Extent, causes and prevention [Report]. Food and Agriculture Organization of the United Nations. google scholar
  • Garcia-Garcia, G., Woolley, E., Rahimifard, S., Colwill, J., White, R., & Needham, L. (2017). A methodology for sustainable management of food waste. Waste and Biomass Valorization, 8(6), 2209–2227. https://doi.org/10.1007/s12649-016-9720-0 google scholar
  • Jagtap, S., Bhatt, C., Thik, J., & Rahimifard, S. (2019). Monitoring potato waste in food manufacturing using image processing and internet of things approach. Sustainability, 11(11), 3173. https://doi.org/10.3390/su11113173 google scholar
  • Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Radeva, P. (2021). Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Reports, 7, 5248–5256. https://doi.org/10.1016/j.egyr.2021.08.114 google scholar
  • Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8 [Computer software]. GitHub. https://github.com/ultralytics/ultralytics google scholar
  • Jocher, G., & Qiu, J. (2024). Ultralytics YOLOv11 [Computer software]. GitHub. https://github.com/ultralytics/ultralytics google scholar
  • leftover foods. (2024, May). Food dataset [Data set]. Universe.Roboflow. Retrieved January 29, 2025, from https://universe.roboflow.com/leftover-foods/food-vxkxm google scholar
  • Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., & Chu, X. (2023). YOLOv6 v3.0: A full-scale reloading. arXiv preprint. https://doi.org/10.48550/arXiv.2301.05586 google scholar
  • Li, Y., Zhang, C., Xu, H., Yang, Y., Lu, H., & Deng, L. (2025). Strategies for automated identification of food waste in university cafeterias: A machine vision recognition approach. Applied Sciences, 15(9), 5036. https://doi.org/10.3390/app15095036 google scholar
  • Lubura, J., Pezo, L., Sandu, M. A., Voronova, V., Donsì, F., Šic Žlabur, J., & Voća, N. (2022). Food recognition and food waste estimation using convolutional neural network. Electronics, 11(22), 3746. https://doi.org/10.3390/electronics11223746 google scholar
  • Mazloumian, A., Rosenthal, M., & Gelke, H. (2020). Deep learning for classifying food waste. arXiv preprint. https://doi.org/10.48550/arXiv.2002.03786 google scholar
  • Morton, L. W., Bitto, E. A., Oakland, M. J., & Sand, M. (2008). Accessing food resources: Rural and urban patterns of giving and getting food. Agriculture and Human Values, 25(1), 107–119. https://doi.org/10.1007/s10460-007-9095-8 google scholar
  • Mustapha, A. A., Saruchi, S. A., Supriyono, H., & Solihin, M. I. (2025). A hybrid deep learning model for waste detection and classification utilizing YOLOv8 and CNN. Engineering Proceedings, 84(1), 82. https://doi.org/10.3390/engproc2023084082 google scholar
  • Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126 google scholar
  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927 google scholar
  • Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449. https://doi.org/10.1162/neco_a_00990 google scholar
  • Said, Z., Sharma, P., Nhuong, Q. T. B., Bora, B. J., Lichtfouse, E., Khalid, H. M., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 377, 128952. https://doi.org/10.1016/j.biortech.2023.128952 google scholar
  • Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K., & Obersteiner, G. (2018). Environmental impacts of food waste in Europe. Waste Management, 77, 98–113. https://doi.org/10.1016/j.wasman.2018.04.038 google scholar
  • Stancu, V., Haugaard, P., & Lähteenmäki, L. (2016). Determinants of consumer food waste behaviour: Two routes to food waste. Appetite, 96, 7–17. https://doi.org/10.1016/j.appet.2015.08.025 google scholar
  • trashDetect. (2024, October). Fall2021 dataset [Data set]. Universe.Roboflow. Retrieved January 29, 2025, from https://universe.roboflow.com/trashdetect-hxkvr/fall2021-luamm google scholar
  • Tzutalin. (2015). LabelImg [Computer software]. GitHub. https://github.com/tzutalin/labelImg google scholar
  • United Nations Environment Programme. (2024). Food Waste Index Report 2024 [Report]. United Nations Environment Programme. google scholar
  • Ultralytics. (2025). YOLO Models [Online documentation]. Ultralytics Documentation. Retrieved May 31, 2025, from https://docs.ultralytics.com/models/ google scholar
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (Vol. 30). Curran Associates. https://doi.org/10.48550/arXiv.1706.03762 google scholar
  • Ver Ploeg, M., Breneman, V., Farrigan, T., Hamrick, K., Hopkins, D., Kaufman, P., … & Tuckermanty, E. (2009). Access to affordable and nutritious food: Measuring and understanding food deserts and their consequences: Report to Congress [Government Report]. USDA. Retrieved from https://www.ers.usda.gov/publications/pub-details/?pubid=42729 google scholar
  • Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., & Han, J. (2024). YOLOv10: Real-time end-to-end object detection. In Advances in Neural Information Processing Systems (Vol. 37, pp. 107984–108011). Curran Associates. google scholar
  • Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7464–7475). IEEE. https://doi.org/10.1109/CVPR52688.2023.00732 google scholar
  • Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision (pp. 1–21). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50064-6_1 google scholar

Comparative Performance Analysis of Models from YOLOv6 to YOLOv11 on Food Waste Datasets

Year 2025, Issue: 4, 1 - 19, 09.01.2026
https://doi.org/10.26650/JODA.1660477

Abstract

Food waste has emerged as a significant global issue, both due to the economic losses it causes and its threat to the sustainable use of natural resources. In this study, different versions of the YOLO (You Only Look Once) family, ranging from YOLOv6 to YOLOv11, were compared to enable the automatic detection and classification of food waste. Using two different datasets, performance metrics such as inference speed, accuracy rates (precision, recall), and mean average precision (mAP50, mAP50-95) were analysed for each model. The results demonstrated that the model performance trends varied based on the characteristics of the dataset. In the first dataset, YOLOv9 offered relatively higher accuracy and broader coverage, whereas in the second dataset, YOLOv8 provided a more balanced precision-recall profile. Furthermore, inference times revealed that some models, despite being the latest versions, were not the fastest or most accurate. The performances of the models were also evaluated using two test images. For the first image, YOLOv6 produced higher accuracy than other models but made erroneous or excessive predictions for certain classes. For the second, YOLOv10 and YOLOv11 correctly detected all classes, while earlier models missed or misclassified some. These findings demonstrate the performance limitations of the models when dealing with images containing complex backgrounds and diverse food types. Moreover, they emphasise the importance of considering dataset characteristics, hardware constraints, and application objectives when selecting models. Such considerations can improve the efficiency and sustainability of the intelligent systems developed to detect food waste.

References

  • Agbehadji, I. E., Abayomi, A., Bui, K. H. N., Millham, R. C., & Freeman, E. (2022). Nature inspired search method and custom waste object detection and classification model for smart waste bin. Sensors, 22(16), 6176. https://doi.org/10.3390/s22166176 google scholar
  • Aschemann-Witzel, J., De Hooge, I., Amani, P., Bech-Larsen, T., & Oostindjer, M. (2015). Consumer-related food waste: Causes and potential for action. Sustainability, 7(6), 6457–6477. https://doi.org/10.3390/su7066457 google scholar
  • Bisong, E. (2019). Google colaboratory. In Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7 google scholar
  • Food and Agriculture Organization of the United Nations. (2011). Global food losses and food waste – Extent, causes and prevention [Report]. Food and Agriculture Organization of the United Nations. google scholar
  • Garcia-Garcia, G., Woolley, E., Rahimifard, S., Colwill, J., White, R., & Needham, L. (2017). A methodology for sustainable management of food waste. Waste and Biomass Valorization, 8(6), 2209–2227. https://doi.org/10.1007/s12649-016-9720-0 google scholar
  • Jagtap, S., Bhatt, C., Thik, J., & Rahimifard, S. (2019). Monitoring potato waste in food manufacturing using image processing and internet of things approach. Sustainability, 11(11), 3173. https://doi.org/10.3390/su11113173 google scholar
  • Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Radeva, P. (2021). Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Reports, 7, 5248–5256. https://doi.org/10.1016/j.egyr.2021.08.114 google scholar
  • Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8 [Computer software]. GitHub. https://github.com/ultralytics/ultralytics google scholar
  • Jocher, G., & Qiu, J. (2024). Ultralytics YOLOv11 [Computer software]. GitHub. https://github.com/ultralytics/ultralytics google scholar
  • leftover foods. (2024, May). Food dataset [Data set]. Universe.Roboflow. Retrieved January 29, 2025, from https://universe.roboflow.com/leftover-foods/food-vxkxm google scholar
  • Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., & Chu, X. (2023). YOLOv6 v3.0: A full-scale reloading. arXiv preprint. https://doi.org/10.48550/arXiv.2301.05586 google scholar
  • Li, Y., Zhang, C., Xu, H., Yang, Y., Lu, H., & Deng, L. (2025). Strategies for automated identification of food waste in university cafeterias: A machine vision recognition approach. Applied Sciences, 15(9), 5036. https://doi.org/10.3390/app15095036 google scholar
  • Lubura, J., Pezo, L., Sandu, M. A., Voronova, V., Donsì, F., Šic Žlabur, J., & Voća, N. (2022). Food recognition and food waste estimation using convolutional neural network. Electronics, 11(22), 3746. https://doi.org/10.3390/electronics11223746 google scholar
  • Mazloumian, A., Rosenthal, M., & Gelke, H. (2020). Deep learning for classifying food waste. arXiv preprint. https://doi.org/10.48550/arXiv.2002.03786 google scholar
  • Morton, L. W., Bitto, E. A., Oakland, M. J., & Sand, M. (2008). Accessing food resources: Rural and urban patterns of giving and getting food. Agriculture and Human Values, 25(1), 107–119. https://doi.org/10.1007/s10460-007-9095-8 google scholar
  • Mustapha, A. A., Saruchi, S. A., Supriyono, H., & Solihin, M. I. (2025). A hybrid deep learning model for waste detection and classification utilizing YOLOv8 and CNN. Engineering Proceedings, 84(1), 82. https://doi.org/10.3390/engproc2023084082 google scholar
  • Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126 google scholar
  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927 google scholar
  • Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449. https://doi.org/10.1162/neco_a_00990 google scholar
  • Said, Z., Sharma, P., Nhuong, Q. T. B., Bora, B. J., Lichtfouse, E., Khalid, H. M., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 377, 128952. https://doi.org/10.1016/j.biortech.2023.128952 google scholar
  • Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K., & Obersteiner, G. (2018). Environmental impacts of food waste in Europe. Waste Management, 77, 98–113. https://doi.org/10.1016/j.wasman.2018.04.038 google scholar
  • Stancu, V., Haugaard, P., & Lähteenmäki, L. (2016). Determinants of consumer food waste behaviour: Two routes to food waste. Appetite, 96, 7–17. https://doi.org/10.1016/j.appet.2015.08.025 google scholar
  • trashDetect. (2024, October). Fall2021 dataset [Data set]. Universe.Roboflow. Retrieved January 29, 2025, from https://universe.roboflow.com/trashdetect-hxkvr/fall2021-luamm google scholar
  • Tzutalin. (2015). LabelImg [Computer software]. GitHub. https://github.com/tzutalin/labelImg google scholar
  • United Nations Environment Programme. (2024). Food Waste Index Report 2024 [Report]. United Nations Environment Programme. google scholar
  • Ultralytics. (2025). YOLO Models [Online documentation]. Ultralytics Documentation. Retrieved May 31, 2025, from https://docs.ultralytics.com/models/ google scholar
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (Vol. 30). Curran Associates. https://doi.org/10.48550/arXiv.1706.03762 google scholar
  • Ver Ploeg, M., Breneman, V., Farrigan, T., Hamrick, K., Hopkins, D., Kaufman, P., … & Tuckermanty, E. (2009). Access to affordable and nutritious food: Measuring and understanding food deserts and their consequences: Report to Congress [Government Report]. USDA. Retrieved from https://www.ers.usda.gov/publications/pub-details/?pubid=42729 google scholar
  • Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., & Han, J. (2024). YOLOv10: Real-time end-to-end object detection. In Advances in Neural Information Processing Systems (Vol. 37, pp. 107984–108011). Curran Associates. google scholar
  • Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7464–7475). IEEE. https://doi.org/10.1109/CVPR52688.2023.00732 google scholar
  • Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision (pp. 1–21). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50064-6_1 google scholar
There are 31 citations in total.

Details

Primary Language English
Subjects Data Engineering and Data Science, Data Management and Data Science (Other)
Journal Section Research Article
Authors

Ali Kerem Güler 0000-0003-3405-005X

Submission Date March 18, 2025
Acceptance Date August 19, 2025
Publication Date January 9, 2026
Published in Issue Year 2025 Issue: 4

Cite

APA Güler, A. K. (2026). Comparative Performance Analysis of Models from YOLOv6 to YOLOv11 on Food Waste Datasets. Journal of Data Applications, 4, 1-19. https://doi.org/10.26650/JODA.1660477