Research Article
BibTex RIS Cite

Measuring Artificial Intelligence Integration in Higher Education: A Bibliometric Analysis of Quantitative Studies

Year 2024, Issue: 3, 33 - 62, 22.01.2025
https://doi.org/10.26650/JODA.1536942

Abstract

This study explores the current state of Artificial Intelligence (AI) adoption in higher education, evaluating its scope via bibliometric methods. The research builds upon the knowledge acquired from quantitative studies and establishes guidance for future studies. A total of 24 publications from the combined database of Scupos and Web of Science (WOS) were collected and used as the resource for the bibliometric analysis. The bibliometric analysis using Biblioshiny identified seven indicators, including annual publications, the top 10 contributing countries, the most relevant sources, a thematic map, motor and niche themes, emerging or declining themes, and basic themes. In addition, for the keyword analysis, the authors used the VOSviewer, which identified three clusters: pedagogy, AI tools, and ethics. As a result, the paper provides an improved understanding of AI adoption in education and a framework that includes both students’ and educators’ perspectives on the measures and quantitative research in AI utilization in education. Such knowledge not only provides significant information on the current state of literature and trends but also implications for educators, administrators, and educational technology (EduTech) suppliers.

References

  • Abdelwahab, H. R., Rauf, A., & Chen, D. (2023). Business students’ perceptions of Dutch higher educational institutions in preparing them for artificial intelligence work environments. Industry and Higher Education, 37(1), 22-34. https://doi.org/10.1177/09504222221087614 google scholar
  • Alhumaid, K., Al Naqbi, S., Elsori, D., & Al Mansoori, M. (2023). The adoption of artificial intelligence applications in education. International Journal of Data and Network Science, 7(1), 457-466. https://doi.org/10.5267/j. ijdns.2022.8.013 google scholar
  • An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2023). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28(5), 51875208. https://doi.org/10.1007/s10639-022-11286-z google scholar
  • Aria, M., & Cuccurullo, C. (2022, March 20). Science Mapping Analysis with bibliometrix R- package: An example. https://bibliometrix.org/documents/bibliometrix_Report.html google scholar
  • Bilquise, G., Ibrahim, S., & Salhieh, S. M. (2024). Investigating student acceptance of an academic advising chatbot in higher education institutions. Education and Information Technologies, 29(5), 6357-6382. https://doi.org/10.1007/ s10639-023-12076-x google scholar
  • Bisdas, S., Topriceanu, C.-C., Zakrzewska, Z., Irimia, A.-V., Shakallis, L., Subhash, J., Casapu, M.-M., Leon-Rojas, J., Pinto dos Santos, D., Andrews, D. M., Zeicu, C., Bouhuwaish, A. M., Lestari, A. N., Abu-Ismail, L., Sadiq, A. S., Khamees, A., Mohammed, K. M. G., Williams, E., Omran, A. I., ... Ebrahim, E. H. (2021). Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students’ Perception. FRONTIERS IN PUBLIC HEALTH, 9. https://doi.org/10.3389/fpubh.2021.795284 google scholar
  • Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155-205. https://doi.org/10.1007/BF02019280 google scholar
  • Çelik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138. https://doi. org/10.1016/j.chb.2022.107468 google scholar
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/ s41239-023-00411-8 google scholar
  • Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443-3463. https:// doi.org/10.1007/s10639-020-10159-7 google scholar
  • Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146-166. https://doi.org/10.1016/jjoi.2010.10.002 google scholar
  • Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Vighio, M. S., Alblehai, F., Soomro, R. B., & Shutaleva, A. (2024). Investigating AI-based academic support acceptance and its impact on students’ performance in Malaysian and Pakistani higher education institutions. Education and Information Technologies. https://doi.org/10.1007/ s10639-024-12599-x google scholar
  • Delcker, J., Heil, J., Ifenthaler, D., Seufert, S., & Spirgi, L. (2024). First-year students AI-competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal ofEducational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00452-7 google scholar
  • Echchakoui, S. (2020). Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165-184. https://doi.org/10.1057/ s41270-020-00081-9 google scholar
  • Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of Intention to Use ChatGPT for Educational Purposes: Findings from PLS-SEM and fsQCA. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2226495 google scholar
  • Husamoglu, B., Akova, O., & Cifci, I. (2024). Regenerative stakeholder framework in tourism. Tourism Review, ahead-of-print(ahead-of-print). https://doi.org/10.1108/TR-12-2023-0889 google scholar
  • Jain, K. K., & Raghuram, J. N. V. (2024). Gen-AI integration in higher education: Predicting intentions using SEM-ANN approach. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12506-4 google scholar
  • Li, K. (2023). Determinants of College Students’ Actual Use of AI-Based Systems: An Extension of the Technology Acceptance Model. Sustainability, 15(6). https://doi.org/10.3390/su15065221 google scholar
  • Mohd Rahim, N. I., A. Iahad, N., Yusof, A. F., & A. Al-Sharafi, M. (2022). AI-Based Chatbots Adoption Model for Higher-Education Institutions: A Hybrid PLS-SEM-Neural Network Modelling Approach. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912726 google scholar
  • Ning, Y., Zhang, C., Xu, B., Zhou, Y., & Wijaya, T. T. (2024). Teachers’ AI-TPACK: Exploring the Relationship between Knowledge Elements. Sustainability (Switzerland), 16(3). https://doi.org/10.3390/su16030978 google scholar
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71 google scholar
  • Pons, P., & Latapy, M. (2005). Computing Communities in Large Networks Using Random Walks. In pInar Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and Information Sciences—ISCIS 2005 (pp. 284-293). Springer Berlin Heidelberg. google scholar
  • Salloum, S. A., Almarzouqi, A., Aburayya, A., & Alfaisal, R. (2024). Adoption of Chatbots for University Students. Studies in Big Data, 144, 233-246. https://doi.org/10.1007/978-3-031-52280-2_15 google scholar
  • Shwedeh, F., Salloum, S. A., Aburayya, A., Fatin, B., Elbadawi, M. A., Al Ghurabli, Z., & Al Dabbagh, T. (2024). AI Adoption and Educational Sustainability in Higher Education in the UAE. Studies in Big Data, 144, 201-229. https://doi.org/10.1007/978-3-031-52280-2_14 google scholar
  • Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments. https://doi.org/10.1080/10494820.2023.2209881 google scholar
  • Sun, F., Tian, P., Sun, D., Fan, Y., & Yang, Y. (2024). Pre-service teachers’ inclination to integrate AI into STEM education: Analysis of influencing factors. British Journal ofEducational Technology. https://doi.org/10.1111/ bjet.13469 google scholar
  • Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-Service Teachers’ GenAI Anxiety, Technology Self-Efficacy, and TPACK: Their Structural Relations with Behavioral Intention to Design GenAI-Assisted Teaching. Behavioral Sciences, 14(5). https://doi.org/10.3390/bs14050373 google scholar
  • Wang, X., Li, L., Tan, S. C., Yang, L., & Lei, J. (2023). Preparing for AI-enhanced education: Conceptualizing and empirically examining teachers’ AI readiness. Computers in Human Behavior, 146. https://doi.org/10.1016/j. chb.2023.107798 google scholar
  • Wang, Y., Liu, C., & Tu, Y.-F. (2021). Factors Affecting the Adoption of AI Based Applications in Higher Education: An Analysis of Teachers Perspectives Using Structural Equation Modeling. Educational Technology and Society, 24(3), 116-129. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110454980&partnerID=40&md5=c5 9227a37550a07ad8a4695ad30dcc82 google scholar
  • Yang, J., Wang, Q., Wang, J., Huang, M., & Ma, Y. (2021). A study of K-12 teachers’ TPACK on the technology acceptance of E-schoolbag. Interactive Learning Environments, 29(7), 1062-1075. https://doi.org/10.1080/10 494820.2019.1627560 google scholar
  • Zhang, C, SchieBl, J., PlöBl, L., Hofmann, F., & Glaser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00420-7 google scholar
Year 2024, Issue: 3, 33 - 62, 22.01.2025
https://doi.org/10.26650/JODA.1536942

Abstract

References

  • Abdelwahab, H. R., Rauf, A., & Chen, D. (2023). Business students’ perceptions of Dutch higher educational institutions in preparing them for artificial intelligence work environments. Industry and Higher Education, 37(1), 22-34. https://doi.org/10.1177/09504222221087614 google scholar
  • Alhumaid, K., Al Naqbi, S., Elsori, D., & Al Mansoori, M. (2023). The adoption of artificial intelligence applications in education. International Journal of Data and Network Science, 7(1), 457-466. https://doi.org/10.5267/j. ijdns.2022.8.013 google scholar
  • An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2023). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28(5), 51875208. https://doi.org/10.1007/s10639-022-11286-z google scholar
  • Aria, M., & Cuccurullo, C. (2022, March 20). Science Mapping Analysis with bibliometrix R- package: An example. https://bibliometrix.org/documents/bibliometrix_Report.html google scholar
  • Bilquise, G., Ibrahim, S., & Salhieh, S. M. (2024). Investigating student acceptance of an academic advising chatbot in higher education institutions. Education and Information Technologies, 29(5), 6357-6382. https://doi.org/10.1007/ s10639-023-12076-x google scholar
  • Bisdas, S., Topriceanu, C.-C., Zakrzewska, Z., Irimia, A.-V., Shakallis, L., Subhash, J., Casapu, M.-M., Leon-Rojas, J., Pinto dos Santos, D., Andrews, D. M., Zeicu, C., Bouhuwaish, A. M., Lestari, A. N., Abu-Ismail, L., Sadiq, A. S., Khamees, A., Mohammed, K. M. G., Williams, E., Omran, A. I., ... Ebrahim, E. H. (2021). Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students’ Perception. FRONTIERS IN PUBLIC HEALTH, 9. https://doi.org/10.3389/fpubh.2021.795284 google scholar
  • Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155-205. https://doi.org/10.1007/BF02019280 google scholar
  • Çelik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138. https://doi. org/10.1016/j.chb.2022.107468 google scholar
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/ s41239-023-00411-8 google scholar
  • Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443-3463. https:// doi.org/10.1007/s10639-020-10159-7 google scholar
  • Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146-166. https://doi.org/10.1016/jjoi.2010.10.002 google scholar
  • Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Vighio, M. S., Alblehai, F., Soomro, R. B., & Shutaleva, A. (2024). Investigating AI-based academic support acceptance and its impact on students’ performance in Malaysian and Pakistani higher education institutions. Education and Information Technologies. https://doi.org/10.1007/ s10639-024-12599-x google scholar
  • Delcker, J., Heil, J., Ifenthaler, D., Seufert, S., & Spirgi, L. (2024). First-year students AI-competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal ofEducational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00452-7 google scholar
  • Echchakoui, S. (2020). Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165-184. https://doi.org/10.1057/ s41270-020-00081-9 google scholar
  • Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of Intention to Use ChatGPT for Educational Purposes: Findings from PLS-SEM and fsQCA. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2226495 google scholar
  • Husamoglu, B., Akova, O., & Cifci, I. (2024). Regenerative stakeholder framework in tourism. Tourism Review, ahead-of-print(ahead-of-print). https://doi.org/10.1108/TR-12-2023-0889 google scholar
  • Jain, K. K., & Raghuram, J. N. V. (2024). Gen-AI integration in higher education: Predicting intentions using SEM-ANN approach. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12506-4 google scholar
  • Li, K. (2023). Determinants of College Students’ Actual Use of AI-Based Systems: An Extension of the Technology Acceptance Model. Sustainability, 15(6). https://doi.org/10.3390/su15065221 google scholar
  • Mohd Rahim, N. I., A. Iahad, N., Yusof, A. F., & A. Al-Sharafi, M. (2022). AI-Based Chatbots Adoption Model for Higher-Education Institutions: A Hybrid PLS-SEM-Neural Network Modelling Approach. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912726 google scholar
  • Ning, Y., Zhang, C., Xu, B., Zhou, Y., & Wijaya, T. T. (2024). Teachers’ AI-TPACK: Exploring the Relationship between Knowledge Elements. Sustainability (Switzerland), 16(3). https://doi.org/10.3390/su16030978 google scholar
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71 google scholar
  • Pons, P., & Latapy, M. (2005). Computing Communities in Large Networks Using Random Walks. In pInar Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and Information Sciences—ISCIS 2005 (pp. 284-293). Springer Berlin Heidelberg. google scholar
  • Salloum, S. A., Almarzouqi, A., Aburayya, A., & Alfaisal, R. (2024). Adoption of Chatbots for University Students. Studies in Big Data, 144, 233-246. https://doi.org/10.1007/978-3-031-52280-2_15 google scholar
  • Shwedeh, F., Salloum, S. A., Aburayya, A., Fatin, B., Elbadawi, M. A., Al Ghurabli, Z., & Al Dabbagh, T. (2024). AI Adoption and Educational Sustainability in Higher Education in the UAE. Studies in Big Data, 144, 201-229. https://doi.org/10.1007/978-3-031-52280-2_14 google scholar
  • Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments. https://doi.org/10.1080/10494820.2023.2209881 google scholar
  • Sun, F., Tian, P., Sun, D., Fan, Y., & Yang, Y. (2024). Pre-service teachers’ inclination to integrate AI into STEM education: Analysis of influencing factors. British Journal ofEducational Technology. https://doi.org/10.1111/ bjet.13469 google scholar
  • Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-Service Teachers’ GenAI Anxiety, Technology Self-Efficacy, and TPACK: Their Structural Relations with Behavioral Intention to Design GenAI-Assisted Teaching. Behavioral Sciences, 14(5). https://doi.org/10.3390/bs14050373 google scholar
  • Wang, X., Li, L., Tan, S. C., Yang, L., & Lei, J. (2023). Preparing for AI-enhanced education: Conceptualizing and empirically examining teachers’ AI readiness. Computers in Human Behavior, 146. https://doi.org/10.1016/j. chb.2023.107798 google scholar
  • Wang, Y., Liu, C., & Tu, Y.-F. (2021). Factors Affecting the Adoption of AI Based Applications in Higher Education: An Analysis of Teachers Perspectives Using Structural Equation Modeling. Educational Technology and Society, 24(3), 116-129. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110454980&partnerID=40&md5=c5 9227a37550a07ad8a4695ad30dcc82 google scholar
  • Yang, J., Wang, Q., Wang, J., Huang, M., & Ma, Y. (2021). A study of K-12 teachers’ TPACK on the technology acceptance of E-schoolbag. Interactive Learning Environments, 29(7), 1062-1075. https://doi.org/10.1080/10 494820.2019.1627560 google scholar
  • Zhang, C, SchieBl, J., PlöBl, L., Hofmann, F., & Glaser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00420-7 google scholar
There are 31 citations in total.

Details

Primary Language English
Subjects Econometrics (Other)
Journal Section Research Articles
Authors

Hatice Çifçi 0000-0002-9761-226X

Mehmet Altuğ Şahin 0000-0003-1048-1963

Ibrahim Cifci 0000-0001-7469-1906

Gurel Cetin 0000-0003-3568-6527

Publication Date January 22, 2025
Submission Date August 21, 2024
Acceptance Date November 23, 2024
Published in Issue Year 2024 Issue: 3

Cite

APA Çifçi, H., Şahin, M. A., Cifci, I., Cetin, G. (2025). Measuring Artificial Intelligence Integration in Higher Education: A Bibliometric Analysis of Quantitative Studies. Journal of Data Applications(3), 33-62. https://doi.org/10.26650/JODA.1536942