Research Article
BibTex RIS Cite

Impact Performance Comparison of B4C, SiC, and Al2O3 Ceramics with Varying Surface Angles and Velocities

Year 2025, Volume: 1 Issue: 1, 13 - 27, 28.05.2025

Abstract

The paper describes a study on the impact performance of three different ceramic materials with varying surface angles and impact velocities. Finite element analysis was performed to obtain data on projectile residual velocity, absorbed energy values, and damage data on the plates. Boron carbide and silicon carbide showed better impact performance than alumina, and increasing surface angle reduced projectile residual velocity. The amount of absorbed energy decreased as impact velocity increased, but it increased by an average of 8% when the plate surfaces were inclined. This phenomenon can be explained by the geometric nonlinearity in the ceramic plate, which changes the direction of movement of the projectile and causes differences in the damage formation in the target plates. The damages occurred in ceramic plates were obtained through fragment plotting method, and the ceramic plates were visualized to show the damage structures. The use of an inclined plate provides higher efficiency in alumina samples at high speeds, while the efficiency provided by the oblique surface decreases as the impact speed increases in silicon carbide and boron carbide plates.

References

  • [1] A. B. Dresch, J. Venturini, S. Arcaro, O. R. K. Montedo, and C. P. Bergmann, “Ballistic ceramics and analysis of their mechanical properties for armour applications: A review,” Ceram. Int., vol. 47, no. 7, pp. 8743–8761, Apr. 2021, doi: 10.1016/j.ceramint.2020.12.095.
  • [2] G. J. Appleby-Thomas, D. C. Wood, A. Hameed, J. Painter, and B. Fitzmaurice, “On the effects of powder morphology on the post-comminution ballistic strength of ceramics,” Int. J. Impact Eng., vol. 100, pp. 46–55, Feb. 2017, doi: 10.1016/j.ijimpeng.2016.10.008.
  • [3] X. Guo, X. Sun, X. Tian, G. J. Weng, Q. D. Ouyang, and L. L. Zhu, “Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic,” Compos. Struct., vol. 157, pp. 163–173, Dec. 2016, doi: 10.1016/j.compstruct.2016.08.025.
  • [4] J. P. Iii, “The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics,” J. Eur. Ceram. Soc., 2015.
  • [5] L. M. Bresciani, A. Manes, and M. Giglio, “An analytical model for ballistic impacts against ceramic tiles,” Ceram. Int., vol. 44, no. 17, pp. 21249–21261, Dec. 2018, doi: 10.1016/j.ceramint.2018.08.172.
  • [6] D. Hu, Y. Zhang, Z. Shen, and Q. Cai, “Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems,” Ceram. Int., vol. 43, no. 13, pp. 10368–10376, Sep. 2017, doi: 10.1016/j.ceramint.2017.05.071.
  • [7] I. G. Crouch, M. Kesharaju, and R. Nagarajah, “Characterisation, significance and detection of manufacturing defects in Reaction Sintered Silicon Carbide armour materials,” Ceram. Int., vol. 41, no. 9, pp. 11581–11591, Nov. 2015, doi: 10.1016/j.ceramint.2015.06.083.
  • [8] S. G. Savio and V. Madhu, “Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test,” Int. J. Impact Eng., vol. 113, pp. 161–167, Mar. 2018, doi: 10.1016/j.ijimpeng.2017.11.020.
  • [9] Defence Metallurgical Research Laboratory, Hyderabad, S. G. Savio, V. Madhu, and A. K. Gogia, “Ballistic Performance of Alumina and Zirconia-toughened Alumina Against 7.62 Armour Piercing Projectile,” Def. Sci. J., vol. 64, no. 5, pp. 477–483, Sep. 2014, doi: 10.14429/dsj.64.6745.
  • [10] “An experimental study on ballistic performance of boron carbide tiles,” Int. J. Impact Eng., vol. 38, no. 7, pp. 535–541, Jul. 2011, doi: 10.1016/j.ijimpeng.2011.01.006.
  • [11] “Impact studies of five ceramic materials and pyrex,” Int. J. Impact Eng., vol. 23, no. 1, pp. 771–782, Dec. 1999, doi: 10.1016/S0734-743X(99)00121-9.
  • [12] A. Rajagopal and N. Naik, “Oblique ballistic impact behavior of composites,” Int. J. Damage Mech., vol. 23, pp. 453–482, Apr. 2013, doi: 10.1177/1056789513499268.
  • [13] C. E. Anderson, T. Behner, T. J. Holmquist, and D. L. Orphal, “Penetration response of silicon carbide as a function of impact velocity,” Int. J. Impact Eng., vol. 38, no. 11, pp. 892–899, Nov. 2011, doi: 10.1016/j.ijimpeng.2011.06.002.
  • [14] Ş. Karabulut, H. Karakoç, M. Bilgin, H. Canpolat, G. M. Krolczyk, and M. Sarıkaya, “A comparative study on mechanical and ballistic performance of functionally graded Al6061 composites reinforced with B4C, SiC, and Al2O3,” J. Mater. Res. Technol., vol. 23, pp. 5050–5065, Mar. 2023, doi: 10.1016/j.jmrt.2023.02.116.
  • [15] M. Mamivand and G. H. Liaghat, “A model for ballistic impact on multi-layer fabric targets,” Int. J. Impact Eng., vol. 37, no. 7, pp. 806–812, Jul. 2010, doi: 10.1016/j.ijimpeng.2010.01.003.
  • [16] S. Feli and M. R. Asgari, “Finite element simulation of ceramic/composite armor under ballistic impact,” Compos. Part B Eng., vol. 42, no. 4, pp. 771–780, Jun. 2011, doi: 10.1016/j.compositesb.2011.01.024.
  • [17] D. Gregori, R. Scazzosi, S. G. Nunes, S. C. Amico, M. Giglio, and A. Manes, “Analytical and numerical modelling of high-velocity impact on multilayer alumina/aramid fiber composite ballistic shields: Improvement in modelling approaches,” Compos. Part B Eng., vol. 187, p. 107830, Apr. 2020, doi: 10.1016/j.compositesb.2020.107830.
  • [18] S. Meng, L. Taddei, N. Lebaal, and S. Roth, “Advances in ballistic penetrating impact simulations on thin structures using Smooth Particles Hydrodynamics: A state of the art,” Thin-Walled Struct., vol. 159, p. 107206, Feb. 2021, doi: 10.1016/j.tws.2020.107206.
  • [19] G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, Jan. 1985, doi: 10.1016/0013-7944(85)90052-9.
  • [20] G. R. Johnson and T. J. Holmquist, “An improved computational constitutive model for brittle materials,” in AIP Conference Proceedings, Colorado Springs, Colorado (USA): AIP, 1994, pp. 981–984. doi: 10.1063/1.46199.
  • [21] T. J. Holmquist, G. R. Johnson, and W. H. Cook, “A Computational Constitutive Model For Concrete Subjected to Large Strains, High Strain Rates, and High Pressures,” 14th Int. Symp. Vol 2 Warhead Mech. Termin. Ballist. 1993 Quebec Can., pp. 591–600, Jan. 1993.
  • [22] B. Tepeduzu and R. Karakuzu, “Ballistic performance of ceramic/composite structures,” Ceram. Int., vol. 45, no. 2, pp. 1651–1660, Feb. 2019, doi: 10.1016/j.ceramint.2018.10.042.
  • [23] L. Chandran, S. D. Rapaka, K. Eswara Prasad, and R. K. Annabattula, “Modeling the failure of silicon carbide under high strain-rate compression: A parametric study,” Mater. Today Proc., p. S2214785323012099, Mar. 2023, doi: 10.1016/j.matpr.2023.03.167.
  • [24] L. Westerling, P. Lundberg, and B. Lundberg, “Tungsten long-rod penetration into con"ned cylinders of boron carbide at and above ordnance velocities,” Int. J. Impact Eng., 2001.
  • [25] Software product, “Autodyn Composite Modeling Guide,” Ansys 2019.
There are 25 citations in total.

Details

Primary Language English
Subjects Ballistic Systems, Numerical Modelling and Mechanical Characterisation
Journal Section Research Article
Authors

Volkan Arıkan 0000-0002-6102-6584

Publication Date May 28, 2025
Submission Date April 15, 2025
Acceptance Date May 8, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

IEEE V. Arıkan, “Impact Performance Comparison of B4C, SiC, and Al2O3 Ceramics with Varying Surface Angles and Velocities”, JDEU, vol. 1, no. 1, pp. 13–27, 2025.