Review Article
BibTex RIS Cite
Year 2025, Volume: 1 Issue: 1, 39 - 67, 28.05.2025

Abstract

References

  • [1] N. Khatavkar and B. K., “Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review,” RSC Adv, vol. 6, pp. 6709–6718, Dec. 2016, doi. 10.1039/C5RA18712E.
  • [2] S. Kumar and P. Gupta, “A review on ceramic and polymer materials for radome applications,” in Proc. of the 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), 19-22 December 2019, Ahmedabad, India [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [3] E. Öziş, A. V. Osipov, and T. F. Eibert, “Metamaterials for microwave radomes and the concept of a metaradome. review of the literature,” Int J Antennas Propag, vol. 2017, pp. 1–13, Jul. 2017, doi. 10.1155/2017/1356108.
  • [4] Ş. S. Fidan and R. Ünal, “A survey on ceramic radome failure types and the importance of defect determination,” Eng Fail Anal, vol. 149, p. 107234, Jul. 2023, doi. 10.1016/j.engfailanal.2023.107234.
  • [5] F. Nazari, M. Taherkhani, M. Mokhtari, H. Aliakbarian, and O. Shekoofa, “Efficient design methodology for sandwich radome panels. a C‐band design example,” IET Science, Measurement & Technology, vol. 14, pp. 808–816, Sep. 2020, doi. 10.1049/iet-smt.2019.0209.
  • [6] M. Demirel, “Imparting non-flammability to glass fiber reinforced polyester composites (In Turkish),” M.S. thesis, Gazi Univ., Ankara, Türkiye, 2007.
  • [7] T. Sheret, C. Parini, and B. Allen, “Efficient design of a radome for minimised transmission loss,” IET Microwaves, Antennas & Propagation, vol. 10, pp. 1662–1666, Jun. 2016, doi. 10.1049/iet-map.2016.0041.
  • [8] B. Audone, A. Delogu, and P. Mariondo, “Radome design and measurements,” IEEE Trans Instrum Meas, vol. 37, pp. 292–295, Jun. 1988, doi. 10.1109/19.6069.
  • [9] G. A. Crowell Sr., “The descriptive geometry of nose cones,” 1996. Accessed. Apr. 20, 2025. [Online]. Available. https.//web.archive.org/web/20110411143013/http.//www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF
  • [10] B. Özdemir, E. Salamci, M. Kuloğlu, and A. M. Ateş, “Comparison of radome sandwich composite structures with finite element method,” Mater Today Proc, vol. 34, pp. 297–303, Apr. 2020, doi. 10.1016/j.matpr.2020.03.800.
  • [11] F. Mazlumi and F. Mazlumi, “Analysis and design of flat asymmetrical a-sandwich radomes,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, pp. 9–13, Jul. 2018.
  • [12] Z. Wang, L. Tang, L. Zhou, Z. Jiang, Z. Liu, and Y. Liu, “Methodology to design variable-thickness streamlined radomes with graded dielectric multilayered wall,” IEEE Trans Antennas Propag, vol. 69, pp. 8015–8020, Jun. 2021, doi. 10.1109/TAP.2021.3083799.
  • [13] K.A. Chepala, R.R. Ghali, J. Mukherjee, “Multilayer C-sandwich radome design for broad-band and multi-band airborne application” in Proc. of the 2021 2nd International Conference on Range Technology (ICORT), 5-6 August 2021, Chandipur, Balasore, India [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [14] A. E. Fuhs, “Radar cross section lectures,” Monterey, California, 1982.
  • [15] R. Shavit, Radome electromagnetic theory and design. Hoboken, NJ, USA. Wiley-IEEE Press, 2018.
  • [16] H. Uçar, “Radar cross section reduction,” Journal of Naval Science and Engineering, vol. 9, pp. 72–87, 2013.
  • [17] Y. Ge, K. P. Esselle, and T. S. Bird, “A high-gain low-profile EBG resonator antenna,” in Proc. of the 2007 IEEE Antennas and Propagation Society International Symposium, 09-15 June 2007, Honolulu, HI, USA [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [18] D. Peterson, J. Otto, and K. Douglas, “Radome boresight error and compensation techniques for electronically scanned arrays,” in Proc. of the Annual Interceptor Technology Conference, Jun. 1993, Reston, Virginia [Online]. Available. https.//arc.aiaa.org. [Accessed. 20 Apr. 2025].
  • [19] D. D. Barnard, “Bore sight error analysis in seeker antennas. a fully functional GUI interfaced ray tracing solution,” M.S. thesis, Stellenbosch Univ., Stellenbosch, South Africa, 2013.
  • [20] N. A. Korkut, A. Kara, and F. Ergün Yardım, “Conformal frequency selective surfaces in radome design. a mini review,” Savunma Bilimleri Dergisi, vol. 20, pp. 211–222, Sep. 2024, doi. 10.17134/khosbd.1519500.
  • [21] E. Whalen, G. Gampala, K. Hunter, S. Mishra, and C. J. Reddy, “Aircraft radome characterization via multiphysics simulation,” in Proc. of 2018 AMTA Proceedings, 04-09 November 2018, Williamsburg, VA, USA [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [22] R. U. Nair, M. Suprava, and R. M. Jha, “Graded dielectric inhomogeneous streamlined radome for airborne applications,” IET The Institution of Engineering and Technology, vol. 51, pp. 862–863, May 2015, doi. 10.1049/el.2015.0462.
  • [23] J. L. Rotgerink, H. van der Ven, T. Voigt, E. Jehamy, M. Schick, and H. Schippers, “Modelling of effects of nose radomes on radar antenna performance,” in Proc. of 2016 10th European Conference on Antennas and Propagation (EuCAP), 10-15 Apr. 2016, Davos, Switzerland [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [24] B. M. Schroeder, “Electromagnetic and structural comparison of ultra-wideband antenna radomes,” M.S. thesis, Kansas Univ., Lawrence, United States, 2020.
  • [25] C. M. S., P. G. K., R. G. D., S. S., and D. M., “Simulation of radome moving at supersonic speed,” IJSER International Journal of Scientific & Engineering Research, vol. 11, pp. 197–206, Jun. 2020.
  • [26] A. S. Varma, S. G. Sathyanarayana, and S. J., “CFD analysis of various nose profiles,” International Journal of Aerospace and Mechanical Engineering, vol. 3, pp. 26–29, Jun. 2016.
  • [27] L. de A. S. Carvalho and G. C. C. Filho, “CFD analysis of drag force for different nose cone design,” in Proc. of IX Fórum de Pesquisa e Inovação do Centro de Lançamento da Barreira do Inferno, Oct. 2019, Natal, Rio Grande do Norte, Brazil [Online]. Available. ResearchGate, https.//www.researchgate.net [Accessed 21 Apr. 2025].
  • [28] J. D. Diaz, J. L. Salazar, A. Mancini, and J. G. Colom, “Radome design and experimental characterization of scattering and propagation properties for atmospheric radar applications,” in Proc. of the 95th Annual Meeting of the American Meteorological Society. Atmospheric Radar Applications, Jan. 2015, Phoenix, Arizona, USA [Online]. Available. ResearchGate, https.//www.researchgate.net [Accessed. 21 Apr. 2025].
  • [29] M. H. Bloom, D. Eisen, M. Epstein, L. Galovin, A. G. Hammitt, E. D. Kennedy, F. Lane, D. E. Magnus, A. A. Marino and H. S. Pergament, “Aerodynamic and structural analyses of radome shells,”, General Applied Science Laboratories, USA, Feb. 1961.
  • [30] H. Ghasemnejad, H. Hadavinia, and A. Aboutorabi, “Effect of delamination failure in crashworthiness analysis of hybrid composite box structures,” Mater Des, vol. 31, pp. 1105–1116, Mar. 2010, doi. 10.1016/j.matdes.2009.09.043.
  • [31] S. T. W. Lau, M. R. Said, and M. Y. Yaakob, “On the effect of geometrical designs and failure modes in composite axial crushing. a literature review,” Compos Struct, vol. 94, pp. 803–812, Feb. 2012, doi. 10.1016/j.compstruct.2011.09.013.
  • [32] D. W. Wragg, Aviation Dictionary (In Turkish). Osprey, 1973.
  • [33] D. Davis, F. Mathew, J. K. P., N. Seenivasaraja, and K. A., “Design and analysis of different types of aircraft radome,” in Proc. of the National Conference on Recent Advancements and Innovations in Mechanical Engineering, 2015, India [Online]. Available. https.//www.ijert.org
  • [34] M. T. Aamir, M. A. Nasir, Z. Iqbal, H. A. Khan, and Z. Muneer, “Multi-disciplinary optimization of hybrid composite radomes for enhanced performance,” Results in Engineering, vol. 20, pp. 1–13, Oct. 2023, doi. 10.1016/j.rineng.2023.101547.
  • [35] X. Tang, W. Zhang, J. Zhu, F. L. Wang, and J. Lei, “Multidisciplinary optimization of airborne radome using genetic algorithm,” in Proc. of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, AICI 2009, H. Deng and L. Wang, Eds., Berlin, Heidelberg. Springer, 2009, pp. 150–158.
  • [36] “Multidisciplinary design optimization,” Wikipedia, [Online]. Available. https.//en.wikipedia.org/wiki/Multidisciplinary_design_optimization [Accessed. 18 Apr. 2025].
  • [37] R. Ghadge, R. Ghorpade, and S. Joshi, “Multi-disciplinary design optimization of composite structures. a review,” Compos Struct, vol. 280, pp. 1–7, Oct. 2021, doi. 10.1016/j.compstruct.2021.114875.
  • [38] H. Demirci and M. Kotan, “Recent metaheuristic algorithms used in the field of engineering (In Turkish),” in Mühendislikte ileri ve çağdaş çalışmalar 1, M. S. Cengiz, Ed., Kemeraltı-Konak, İzmir, 2023, ch. 11, pp. 176–196.
  • [39] E. V. Altay and O. Altay, “Comparison of current metaheuristic optimization algorithms with CEC2020 test functions (In Turkish),” DUJE (Dicle University Journal of Engineering), vol. 12, pp. 729–741, Dec. 2021, doi. 10.24012/dumf.1051338.
  • [40] J. H. Holland, Adaptation in natural and artificial systems. United States of America. The MIT Press, 1992.
  • [41] R. P. E. Carrera, A. Pagani, and M. P. Lionetti, “MDO analysis of composite wing,” M.S. thesis, Politecnico di Torino Univ., Turin, Italy, 2019.
  • [42] “What is simulated annealing?,” Wikipedia, [Online]. Available. https.//en.wikipedia.org/wiki/Simulated_annealing [Accessed. 18 Apr. 2025].
  • [43] A. M. Rao, C. Ratnam, J. Srinivas, and A. Premkumar, “Optimum design of multilayer composite plates using simulated annealing,” Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials. Design and Applications, vol. 216, pp. 193–197, Jul. 2002, doi. 10.1177/146442070221600304.
  • [44] O. Erdal and F. O. Sonmez, “Optimum design of composite laminates for maximum buckling load capacity using simulated annealing,” Compos Struct, vol. 71, pp. 45–52, Oct. 2004, doi. 10.1016/j.compstruct.2004.09.008.
  • [45] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of the ICNN’95 - International Conference on Neural Networks, 27 November - 01 December 1995, Perth, WA, Australia [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [46] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, pp. 397–407, Feb. 2004, doi. 10.1109/TAP.2004.823969.
  • [47] G.-C. Luh, C.-Y. Lin, and Y.-S. Lin, “A binary particle swarm optimization for continuum structural topology optimization,” Appl Soft Comput, vol. 11, pp. 2833–2844, Nov. 2011, doi. 10.1016/j.asoc.2010.11.013.
  • [48] W. Xu, B. Y. Duan, P. Li, N. Hu, and Y. Qiu, “Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes,” IEEE Trans. Antennas Propag., vol. 62, pp. 5880–5885, Nov. 2014, doi. 10.1109/TAP.2014.2352361.
  • [49] R. Fletcher, Practical methods of optimization, Second. Scotland, UK. Wiley, 2000.
  • [50] J. S. Arora, Introduction to optimum design, Third. USA. Academic Press, 2012.
  • [51] “What is gradient based learning in deep learning?,” JanBask Training. [Online]. Available. https.//www.janbasktraining.com/tutorials/what-is-gradient-based-learning-in-deep-learning/ [Accessed. 18 Apr. 2025].
  • [52] M. Ece, “Testing of small-sized radomes (In Turkish),” M.S. thesis, Erciyes Univ., Kayseri, Türkiye, 2006.
  • [53] N. V. Srinivasulu, S. Khan, and S. Jaikrishna, “Design and analysis of submarine radome,” in Proc of the International Conference on Research and Innovations in Mechanical Engineering. Lecture Notes in Mechanical Engineering, S. S. Khangura, P. Singh, H. Singh, and G. S. Brar, Eds. New Delhi. Springer, Apr. 2014, pp. 11–26.
  • [54] V. M. Soumya, S. Navaneetha, A. N. Reddy, and J. Jagadesh Kumar, “Design considerations of radomes. A review,” International Journal of Mechanical Engineering and Technology (IJMET), vol. 8, pp. 42–48, Mar. 2017.
  • [55] H. U. Tahseen, L. Yang, and X. Zhou, “Design of FSS-antenna-radome system for airborne and ground applications,” IET Communications, vol. 15, pp. 1691–1699, Mar. 2021, doi. 10.1049/cmu2.12181.
  • [56] O. Aktaş, “Design of a circularly polarized L1-band GPS/GNSS antenna with radome (In Turkish),” M.S. thesis, Hacettepe Univ., Ankara, Türkiye, 2019.
  • [57] C. E. Schwartz, T. G. Bryant, J. H. Cosgrove, G. B. Morse, and J. K. Noonan, “A radar for unmanned air vehicles,” The Lincoln Laboratory Journal, vol. 3, pp. 119–143, 1990.
  • [58] W. Gan, J. Xiang, T. Ma, Q. Zhang, and D. Bie, “Low drag design of radome for unmanned aerial vehicle,” in Proc. of the 2017 IEEE International Conference on Unmanned Systems (ICUS), 27-29 October 2017, Beijing, China [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [59] N. Shirke, V. Ghase, and V. Jamdar, “Recent advances in stealth coating,” Polymer Bulletin, vol. 81, pp. 9389–9418, Jul. 2024, doi. 10.1007/s00289-024-05166-4.
  • [60] R. Panwar and J. R. Lee, “Performance and non-destructive evaluation methods of airborne radome and stealth structures,” Meas Sci Technol, vol. 29, pp. 1–29, Apr. 2018, doi. 10.1088/1361-6501/aaa8aa.
  • [61] H. Shin, D. Yoon, D. Y. Na, and Y. Park, “Analysis of radome cross section of an aircraft equipped with a FSS radome,” IEEE Access, vol. 10, pp. 33704–33712, Mar. 2022, doi. 10.1109/ACCESS.2022.3162262.
  • [62] C. Qiu, S. Li, W. Zhang, L. Song, X. Li, Z. Yan, Y. Chen, and S. Suo, “A rapid modeling method for airborne FSS radomes based on dynamic customizable primitives,” Aerospace, vol. 11, p. 505, Jun. 2024, doi. 10.3390/aerospace11070505.
  • [63] M. Wahab, “Radar radome and its design considerations,” in Proc. of the International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering, 23-25 November 2009, Bandung, Indonesia [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 15 Apr. 2025].

An Example of Multidisciplinary Work in Aviation: Radome Design

Year 2025, Volume: 1 Issue: 1, 39 - 67, 28.05.2025

Abstract

Radome structures are essential in contemporary aerospace and defense systems, safeguarding radar equipment while facilitating the effective transmission of electromagnetic waves. This assessment offers a multidisciplinary analysis of radome design, concentrating on the incorporation of materials engineering, structural mechanics, aerodynamics, and electromagnetic efficiency. Particular focus is placed on composite materials featuring low dielectric constants, metamaterials, and frequency selective surfaces (FSS), which enhance RF transparency and lower radar cross-section (RCS). The influence of structural shapes on aerodynamic resistance and high-speed mechanical strength is examined, along with typical failure modes due to environmental stressors like temperature changes, humidity, and UV radiation. Sophisticated numerical techniques like the Finite Element Method (FEM), Finite-Difference Time-Domain (FDTD), and Method of Moments (MoM) are examined for electromagnetic analysis, whereas Computational Fluid Dynamics (CFD) evaluates aerodynamic properties and flow dynamics. Furthermore, the document emphasizes recent advancements in combined optimization approaches and design software tools that concurrently tackle electromagnetic, mechanical, and aerodynamic needs. These methods encompass multidisciplinary design optimization (MDO) frameworks, topology optimization, and design iterations supported by machine learning. By merging these viewpoints, the research provides a comprehensive strategy for radome design and seeks to facilitate the advancement of next-generation aerospace systems with superior performance, lower detectability, and increased structural durability.

References

  • [1] N. Khatavkar and B. K., “Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review,” RSC Adv, vol. 6, pp. 6709–6718, Dec. 2016, doi. 10.1039/C5RA18712E.
  • [2] S. Kumar and P. Gupta, “A review on ceramic and polymer materials for radome applications,” in Proc. of the 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), 19-22 December 2019, Ahmedabad, India [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [3] E. Öziş, A. V. Osipov, and T. F. Eibert, “Metamaterials for microwave radomes and the concept of a metaradome. review of the literature,” Int J Antennas Propag, vol. 2017, pp. 1–13, Jul. 2017, doi. 10.1155/2017/1356108.
  • [4] Ş. S. Fidan and R. Ünal, “A survey on ceramic radome failure types and the importance of defect determination,” Eng Fail Anal, vol. 149, p. 107234, Jul. 2023, doi. 10.1016/j.engfailanal.2023.107234.
  • [5] F. Nazari, M. Taherkhani, M. Mokhtari, H. Aliakbarian, and O. Shekoofa, “Efficient design methodology for sandwich radome panels. a C‐band design example,” IET Science, Measurement & Technology, vol. 14, pp. 808–816, Sep. 2020, doi. 10.1049/iet-smt.2019.0209.
  • [6] M. Demirel, “Imparting non-flammability to glass fiber reinforced polyester composites (In Turkish),” M.S. thesis, Gazi Univ., Ankara, Türkiye, 2007.
  • [7] T. Sheret, C. Parini, and B. Allen, “Efficient design of a radome for minimised transmission loss,” IET Microwaves, Antennas & Propagation, vol. 10, pp. 1662–1666, Jun. 2016, doi. 10.1049/iet-map.2016.0041.
  • [8] B. Audone, A. Delogu, and P. Mariondo, “Radome design and measurements,” IEEE Trans Instrum Meas, vol. 37, pp. 292–295, Jun. 1988, doi. 10.1109/19.6069.
  • [9] G. A. Crowell Sr., “The descriptive geometry of nose cones,” 1996. Accessed. Apr. 20, 2025. [Online]. Available. https.//web.archive.org/web/20110411143013/http.//www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF
  • [10] B. Özdemir, E. Salamci, M. Kuloğlu, and A. M. Ateş, “Comparison of radome sandwich composite structures with finite element method,” Mater Today Proc, vol. 34, pp. 297–303, Apr. 2020, doi. 10.1016/j.matpr.2020.03.800.
  • [11] F. Mazlumi and F. Mazlumi, “Analysis and design of flat asymmetrical a-sandwich radomes,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, pp. 9–13, Jul. 2018.
  • [12] Z. Wang, L. Tang, L. Zhou, Z. Jiang, Z. Liu, and Y. Liu, “Methodology to design variable-thickness streamlined radomes with graded dielectric multilayered wall,” IEEE Trans Antennas Propag, vol. 69, pp. 8015–8020, Jun. 2021, doi. 10.1109/TAP.2021.3083799.
  • [13] K.A. Chepala, R.R. Ghali, J. Mukherjee, “Multilayer C-sandwich radome design for broad-band and multi-band airborne application” in Proc. of the 2021 2nd International Conference on Range Technology (ICORT), 5-6 August 2021, Chandipur, Balasore, India [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [14] A. E. Fuhs, “Radar cross section lectures,” Monterey, California, 1982.
  • [15] R. Shavit, Radome electromagnetic theory and design. Hoboken, NJ, USA. Wiley-IEEE Press, 2018.
  • [16] H. Uçar, “Radar cross section reduction,” Journal of Naval Science and Engineering, vol. 9, pp. 72–87, 2013.
  • [17] Y. Ge, K. P. Esselle, and T. S. Bird, “A high-gain low-profile EBG resonator antenna,” in Proc. of the 2007 IEEE Antennas and Propagation Society International Symposium, 09-15 June 2007, Honolulu, HI, USA [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [18] D. Peterson, J. Otto, and K. Douglas, “Radome boresight error and compensation techniques for electronically scanned arrays,” in Proc. of the Annual Interceptor Technology Conference, Jun. 1993, Reston, Virginia [Online]. Available. https.//arc.aiaa.org. [Accessed. 20 Apr. 2025].
  • [19] D. D. Barnard, “Bore sight error analysis in seeker antennas. a fully functional GUI interfaced ray tracing solution,” M.S. thesis, Stellenbosch Univ., Stellenbosch, South Africa, 2013.
  • [20] N. A. Korkut, A. Kara, and F. Ergün Yardım, “Conformal frequency selective surfaces in radome design. a mini review,” Savunma Bilimleri Dergisi, vol. 20, pp. 211–222, Sep. 2024, doi. 10.17134/khosbd.1519500.
  • [21] E. Whalen, G. Gampala, K. Hunter, S. Mishra, and C. J. Reddy, “Aircraft radome characterization via multiphysics simulation,” in Proc. of 2018 AMTA Proceedings, 04-09 November 2018, Williamsburg, VA, USA [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [22] R. U. Nair, M. Suprava, and R. M. Jha, “Graded dielectric inhomogeneous streamlined radome for airborne applications,” IET The Institution of Engineering and Technology, vol. 51, pp. 862–863, May 2015, doi. 10.1049/el.2015.0462.
  • [23] J. L. Rotgerink, H. van der Ven, T. Voigt, E. Jehamy, M. Schick, and H. Schippers, “Modelling of effects of nose radomes on radar antenna performance,” in Proc. of 2016 10th European Conference on Antennas and Propagation (EuCAP), 10-15 Apr. 2016, Davos, Switzerland [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [24] B. M. Schroeder, “Electromagnetic and structural comparison of ultra-wideband antenna radomes,” M.S. thesis, Kansas Univ., Lawrence, United States, 2020.
  • [25] C. M. S., P. G. K., R. G. D., S. S., and D. M., “Simulation of radome moving at supersonic speed,” IJSER International Journal of Scientific & Engineering Research, vol. 11, pp. 197–206, Jun. 2020.
  • [26] A. S. Varma, S. G. Sathyanarayana, and S. J., “CFD analysis of various nose profiles,” International Journal of Aerospace and Mechanical Engineering, vol. 3, pp. 26–29, Jun. 2016.
  • [27] L. de A. S. Carvalho and G. C. C. Filho, “CFD analysis of drag force for different nose cone design,” in Proc. of IX Fórum de Pesquisa e Inovação do Centro de Lançamento da Barreira do Inferno, Oct. 2019, Natal, Rio Grande do Norte, Brazil [Online]. Available. ResearchGate, https.//www.researchgate.net [Accessed 21 Apr. 2025].
  • [28] J. D. Diaz, J. L. Salazar, A. Mancini, and J. G. Colom, “Radome design and experimental characterization of scattering and propagation properties for atmospheric radar applications,” in Proc. of the 95th Annual Meeting of the American Meteorological Society. Atmospheric Radar Applications, Jan. 2015, Phoenix, Arizona, USA [Online]. Available. ResearchGate, https.//www.researchgate.net [Accessed. 21 Apr. 2025].
  • [29] M. H. Bloom, D. Eisen, M. Epstein, L. Galovin, A. G. Hammitt, E. D. Kennedy, F. Lane, D. E. Magnus, A. A. Marino and H. S. Pergament, “Aerodynamic and structural analyses of radome shells,”, General Applied Science Laboratories, USA, Feb. 1961.
  • [30] H. Ghasemnejad, H. Hadavinia, and A. Aboutorabi, “Effect of delamination failure in crashworthiness analysis of hybrid composite box structures,” Mater Des, vol. 31, pp. 1105–1116, Mar. 2010, doi. 10.1016/j.matdes.2009.09.043.
  • [31] S. T. W. Lau, M. R. Said, and M. Y. Yaakob, “On the effect of geometrical designs and failure modes in composite axial crushing. a literature review,” Compos Struct, vol. 94, pp. 803–812, Feb. 2012, doi. 10.1016/j.compstruct.2011.09.013.
  • [32] D. W. Wragg, Aviation Dictionary (In Turkish). Osprey, 1973.
  • [33] D. Davis, F. Mathew, J. K. P., N. Seenivasaraja, and K. A., “Design and analysis of different types of aircraft radome,” in Proc. of the National Conference on Recent Advancements and Innovations in Mechanical Engineering, 2015, India [Online]. Available. https.//www.ijert.org
  • [34] M. T. Aamir, M. A. Nasir, Z. Iqbal, H. A. Khan, and Z. Muneer, “Multi-disciplinary optimization of hybrid composite radomes for enhanced performance,” Results in Engineering, vol. 20, pp. 1–13, Oct. 2023, doi. 10.1016/j.rineng.2023.101547.
  • [35] X. Tang, W. Zhang, J. Zhu, F. L. Wang, and J. Lei, “Multidisciplinary optimization of airborne radome using genetic algorithm,” in Proc. of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, AICI 2009, H. Deng and L. Wang, Eds., Berlin, Heidelberg. Springer, 2009, pp. 150–158.
  • [36] “Multidisciplinary design optimization,” Wikipedia, [Online]. Available. https.//en.wikipedia.org/wiki/Multidisciplinary_design_optimization [Accessed. 18 Apr. 2025].
  • [37] R. Ghadge, R. Ghorpade, and S. Joshi, “Multi-disciplinary design optimization of composite structures. a review,” Compos Struct, vol. 280, pp. 1–7, Oct. 2021, doi. 10.1016/j.compstruct.2021.114875.
  • [38] H. Demirci and M. Kotan, “Recent metaheuristic algorithms used in the field of engineering (In Turkish),” in Mühendislikte ileri ve çağdaş çalışmalar 1, M. S. Cengiz, Ed., Kemeraltı-Konak, İzmir, 2023, ch. 11, pp. 176–196.
  • [39] E. V. Altay and O. Altay, “Comparison of current metaheuristic optimization algorithms with CEC2020 test functions (In Turkish),” DUJE (Dicle University Journal of Engineering), vol. 12, pp. 729–741, Dec. 2021, doi. 10.24012/dumf.1051338.
  • [40] J. H. Holland, Adaptation in natural and artificial systems. United States of America. The MIT Press, 1992.
  • [41] R. P. E. Carrera, A. Pagani, and M. P. Lionetti, “MDO analysis of composite wing,” M.S. thesis, Politecnico di Torino Univ., Turin, Italy, 2019.
  • [42] “What is simulated annealing?,” Wikipedia, [Online]. Available. https.//en.wikipedia.org/wiki/Simulated_annealing [Accessed. 18 Apr. 2025].
  • [43] A. M. Rao, C. Ratnam, J. Srinivas, and A. Premkumar, “Optimum design of multilayer composite plates using simulated annealing,” Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials. Design and Applications, vol. 216, pp. 193–197, Jul. 2002, doi. 10.1177/146442070221600304.
  • [44] O. Erdal and F. O. Sonmez, “Optimum design of composite laminates for maximum buckling load capacity using simulated annealing,” Compos Struct, vol. 71, pp. 45–52, Oct. 2004, doi. 10.1016/j.compstruct.2004.09.008.
  • [45] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of the ICNN’95 - International Conference on Neural Networks, 27 November - 01 December 1995, Perth, WA, Australia [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [46] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, pp. 397–407, Feb. 2004, doi. 10.1109/TAP.2004.823969.
  • [47] G.-C. Luh, C.-Y. Lin, and Y.-S. Lin, “A binary particle swarm optimization for continuum structural topology optimization,” Appl Soft Comput, vol. 11, pp. 2833–2844, Nov. 2011, doi. 10.1016/j.asoc.2010.11.013.
  • [48] W. Xu, B. Y. Duan, P. Li, N. Hu, and Y. Qiu, “Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes,” IEEE Trans. Antennas Propag., vol. 62, pp. 5880–5885, Nov. 2014, doi. 10.1109/TAP.2014.2352361.
  • [49] R. Fletcher, Practical methods of optimization, Second. Scotland, UK. Wiley, 2000.
  • [50] J. S. Arora, Introduction to optimum design, Third. USA. Academic Press, 2012.
  • [51] “What is gradient based learning in deep learning?,” JanBask Training. [Online]. Available. https.//www.janbasktraining.com/tutorials/what-is-gradient-based-learning-in-deep-learning/ [Accessed. 18 Apr. 2025].
  • [52] M. Ece, “Testing of small-sized radomes (In Turkish),” M.S. thesis, Erciyes Univ., Kayseri, Türkiye, 2006.
  • [53] N. V. Srinivasulu, S. Khan, and S. Jaikrishna, “Design and analysis of submarine radome,” in Proc of the International Conference on Research and Innovations in Mechanical Engineering. Lecture Notes in Mechanical Engineering, S. S. Khangura, P. Singh, H. Singh, and G. S. Brar, Eds. New Delhi. Springer, Apr. 2014, pp. 11–26.
  • [54] V. M. Soumya, S. Navaneetha, A. N. Reddy, and J. Jagadesh Kumar, “Design considerations of radomes. A review,” International Journal of Mechanical Engineering and Technology (IJMET), vol. 8, pp. 42–48, Mar. 2017.
  • [55] H. U. Tahseen, L. Yang, and X. Zhou, “Design of FSS-antenna-radome system for airborne and ground applications,” IET Communications, vol. 15, pp. 1691–1699, Mar. 2021, doi. 10.1049/cmu2.12181.
  • [56] O. Aktaş, “Design of a circularly polarized L1-band GPS/GNSS antenna with radome (In Turkish),” M.S. thesis, Hacettepe Univ., Ankara, Türkiye, 2019.
  • [57] C. E. Schwartz, T. G. Bryant, J. H. Cosgrove, G. B. Morse, and J. K. Noonan, “A radar for unmanned air vehicles,” The Lincoln Laboratory Journal, vol. 3, pp. 119–143, 1990.
  • [58] W. Gan, J. Xiang, T. Ma, Q. Zhang, and D. Bie, “Low drag design of radome for unmanned aerial vehicle,” in Proc. of the 2017 IEEE International Conference on Unmanned Systems (ICUS), 27-29 October 2017, Beijing, China [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 20 Apr. 2025].
  • [59] N. Shirke, V. Ghase, and V. Jamdar, “Recent advances in stealth coating,” Polymer Bulletin, vol. 81, pp. 9389–9418, Jul. 2024, doi. 10.1007/s00289-024-05166-4.
  • [60] R. Panwar and J. R. Lee, “Performance and non-destructive evaluation methods of airborne radome and stealth structures,” Meas Sci Technol, vol. 29, pp. 1–29, Apr. 2018, doi. 10.1088/1361-6501/aaa8aa.
  • [61] H. Shin, D. Yoon, D. Y. Na, and Y. Park, “Analysis of radome cross section of an aircraft equipped with a FSS radome,” IEEE Access, vol. 10, pp. 33704–33712, Mar. 2022, doi. 10.1109/ACCESS.2022.3162262.
  • [62] C. Qiu, S. Li, W. Zhang, L. Song, X. Li, Z. Yan, Y. Chen, and S. Suo, “A rapid modeling method for airborne FSS radomes based on dynamic customizable primitives,” Aerospace, vol. 11, p. 505, Jun. 2024, doi. 10.3390/aerospace11070505.
  • [63] M. Wahab, “Radar radome and its design considerations,” in Proc. of the International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering, 23-25 November 2009, Bandung, Indonesia [Online]. Available. IEEE Xplore, https.//ieeexplore.ieee.org. [Accessed. 15 Apr. 2025].
There are 63 citations in total.

Details

Primary Language English
Subjects Aerospace Structures
Journal Section Reviews
Authors

Salman Murat Durukan 0009-0005-0635-8155

Yeşim Öz 0009-0003-6443-4895

Ahmet Kardaş 0009-0006-9340-7628

Tuğba Burcu Çakır 0009-0002-7650-0397

Ahmet İvenç 0009-0008-9592-4981

Nursev Erdoğan 0000-0001-6891-7964

Mustafa Kocaman 0000-0002-8217-3970

Mesut Uyaner 0000-0003-2743-2340

Publication Date May 28, 2025
Submission Date April 29, 2025
Acceptance Date May 25, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

IEEE S. M. Durukan, Y. Öz, A. Kardaş, T. B. Çakır, A. İvenç, N. Erdoğan, M. Kocaman, and M. Uyaner, “An Example of Multidisciplinary Work in Aviation: Radome Design”, JDEU, vol. 1, no. 1, pp. 39–67, 2025.