Research Article
BibTex RIS Cite

A Micro Turbine Blade Design for Urban Use Optimized with Fractal Geometry and Miura-Ori Folding Principles, Converting Vibration and Noise into Energy Using Piezoelectric and Triboelectric Materials

Year 2025, Volume: 1 Issue: 2, 9 - 16, 28.11.2025

Abstract

This study theoretically investigates an innovative micro wind turbine blade design that can operate with high efficiency in low-speed and turbulent wind conditions in urban environments, while also converting idle vibration and noise energy into electricity. The proposed design integrates fractal geometry to increase aerodynamic efficiency, Miura-Ori folding principles to ensure structural integrity and lightness, and piezoelectric and triboelectric materials for multi-mode energy harvesting. Evaluated within a counter-rotating system configuration, this blade design aims to offer a new paradigm for sustainable energy production in urban areas. The study also developed the Türkî asymmetric fractal (TAF) model as an alternative to the classical Koch fractal. The Koch fractal defines a trailing edge produced by fully symmetric subdivisions; however, this symmetry can cause boundary layer separation in fluid dynamics. The TAF approach breaks this symmetry by adding phase-offset angular deviations to the fractal generation process and produces micro-scale directional variations, offering a quasi-fractal approach; thus, it presents a new engineering paradigm in the symmetry–asymmetry transition field. The results obtained show that the normalized edge length of the classical Koch fractal is 2.370, while that of the TAF geometry is 2.684. Thus, a surface increase of approximately 13.25% has been achieved. This increase has the potential to increase the potential energy conversion efficiency by expanding the flow interaction area of the fractal surface.

References

  • [1] S. Mertens, “Wind energy in the built environment – concentrator effects of buildings,” Wind Engineering, vol. 30, 2006, doi: 10.1260/030952406779502623.
  • [2] M. Dakeev, Q. Mazumder, F. Yildiz, and K. Baltaci, “Design and development of a new small-scale wind turbine blade,” in Proc. ASEE Annu. Conf. Expo., Conf. Proc., vol. 122, 2015.
  • [3] H. Huang, Q. Liu, M. Yue, W. Miao, P. Wang, and C. Li, “Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions,” Renewable Energy, vol. 203, pp. 280–300, 2023, doi: 10.1016/j.renene.2022.12.060.
  • [4] H. Huang, Q. Liu, G. Iglesias, M. Yue, W. Miao, Q. Ye, C. Li, and T. Yang, “A fully-coupled analysis of the spar-type floating offshore wind turbine with bionic fractal heave plate under wind-wave excitation conditions,” Renewable Energy, vol. 232, p. 121088, 2024, doi: 10.1016/j.renene.2024.121088.
  • [5] K. F. Sagmo and P.-T. S. Storli, “An experimental study regarding the effect of streamwise vorticity on trailing edge vortex induced vibrations of a hydrofoil,” Journal of Sound and Vibration, vol. 542, p. 117349, 2023, doi: 10.1016/j.jsv.2022.117349.
  • [6] K. Hu, X. Wang, S. Zhong, C. Lu, B. Yu, L. Yang, and Y. Rao, “Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches,” Energy, vol. 289, p. 130013, 2024, doi: 10.1016/j.energy.2023.130013.
  • [7] A. M. Elsayed, O. A. Gaheen, H. Elshimy, E. Benini, and M. A. Aziz, “Bio-inspired pressure side stepped NACA 23012 C as wind turbine airfoils in low Reynolds number,” Energy Reports, vol. 13, pp. 3728–3744, 2025, doi: 10.1016/j.egyr.2025.03.029.
  • [8] A. Khedr, K. Panthi, W. U. Ahmed, F. Castellani, and G. V. Iungo, “Riblets and scales on 3D-printed wind turbine blades: Influence of surface micro-patterning properties on enhancing aerodynamic performance,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 266, p. 106188, 2025, doi: 10.1016/j.jweia.2025.106188.
  • [9] M. A. Kadhim, C. C. Phing, L. C. Wai, J. K. S. Paw, Y. C. Tak, K. Kadirgama, and A. A. Kadhim, “Performance study of low-speed wind energy harvesting by micro wind turbine system,” Energy Reports, vol. 13, pp. 3712–3727, 2025, doi: 10.1016/j.egyr.2025.02.046.
  • [10] C. V. C. Rubio, M. Kchaou, P. E. de Faria, J. C. C. Rubio, and F. Alqurashi, “Development of wind turbines for urban environment using innovative design thinking methodology,” Journal of Engineering Research, vol. 13, no. 3, pp. 1916–1923, 2025, doi: 10.1016/j.jer.2024.06.008.
  • [11] S. Liu, L. Zhang, J. Lu, Z. Liu, Z. Jing, X. Zhang, X. Cui, and H. Wang, “A novel bio-inspired ducted wind turbine: from prairie dog burrow architecture to aerodynamic performance optimization,” Renewable Energy, vol. 256, pt. B, p. 123941, 2026, doi: 10.1016/j.renene.2025.123941.
  • [12] M. H. Farhat, A. Mehdizadeh, A. Sedaghat, M. E. L. Badawy, B. Djedi, M. I. Al-Khiami, A. Mostafaeipour, and M. Nazififard, “Origami-inspired urban wind turbines: Scalable bladeless designs for decentralized renewable energy,” Green Technologies and Sustainability, vol. 4, no. 1, p. 100253, 2026, doi: 10.1016/j.grets.2025.100253.
  • [13] J. Zhang, Y. He, C. Boyer, K. Kalantar-Zadeh, S. Peng, D. Chu, and C. H. Wang, “Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters,” Nanoscale Advances, vol. 3, no. 19, pp. 5465–5486, 2021, doi: 10.1039/d1na00501d.
  • [14] M. Mariello, L. Fachechi, F. Guido, and M. De Vittorio, “Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™,” Nano Energy, vol. 83, p. 105811, 2021, doi: 10.1016/j.nanoen.2021.105811.
  • [15] L. He, Y. Han, R. Liu, R. Hu, G. Yu, and G. Cheng, “Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure,” Energy, vol. 256, p. 124675, 2022, doi: 10.1016/j.energy.2022.124675.
  • [16] P. Panpho, T. Charoonsuk, N. Vittayakorn, T. Bongkarn, and R. Sumang, “Flexible hybrid piezo/triboelectric energy harvester based on a lead-free BNT-BT-KNN ceramic-polymer composite film,” Ceramics International, vol. 50, no. 23, pt. C, pp. 52041–52050, 2024, doi: 10.1016/j.ceramint.2024.03.208.
  • [17] S. Lin, J. Kan, C. He, Y. Yu, Z. Yang, L. Zhang, J. Fu, and Z. Zhang, “A direction-parallel piezoelectric wind-induced vibration energy harvester with the transducer movement oriented toward wind direction for pipeline energy harvesting,” Energy, vol. 319, p. 135028, 2025, doi: 10.1016/j.energy.2025.135028.
  • [18] Z. Khosroshahi, F. Karimzadeh, M. H. Enayati, H. G. B. Gowda, and U. Wallrabe, “Humidity resistant triboelectric nanogenerators for wind energy harvesting: A review,” Renewable and Sustainable Energy Reviews, vol. 216, p. 115650, 2025, doi: 10.1016/j.rser.2025.115650.
  • [19] T. Ma, X. Hu, D. Wu, S. Yang, M. Wu, T. Xie, H. Lv, X. Huang, X. Xiang, and Y. Wang, “The effects of bluff body vibration mode to the output performance response of the galloping triboelectric nanogenerator for wind energy harvesting,” Sensors and Actuators A: Physical, vol. 391, p. 116662, 2025, doi: 10.1016/j.sna.2025.116662.
  • [20] F. Dong, Y. Zheng, C. Shi, Y. Cao, and Y. Zhang, “An elliptic gauge-inspired piezoelectric energy harvester for wind turbines,” Sensors and Actuators A: Physical, vol. 395, p. 117011, 2025, doi: 10.1016/j.sna.2025.117011.
  • [21] J. C. Ji, Q. Luo, and K. Ye, “Vibration control based metamaterials and origami structures: A state-of-the-art review,” Mechanical Systems and Signal Processing, vol. 161, p. 107945, 2021, doi: 10.1016/j.ymssp.2021.107945.
  • [22] S. Fang, S. Zhou, D. Yurchenko, T. Yang, and W.-H. Liao, “Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review,” Mechanical Systems and Signal Processing, vol. 166, p. 108419, 2022, doi: 10.1016/j.ymssp.2021.108419.
  • [23] A. B. S. Devin, A. Keshavarzi, A. A. Hemami, A. F. Bashipour, and H. S. Googarchin, “From Nature to Engineering: The Evolutionary Journey of Bio-Inspired Energy Absorbers Across Diverse Loading Conditions,” Thin-Walled Structures, vol. 216, pt. B, p. 113684, 2025, doi: 10.1016/j.tws.2025.113684.
  • [24] H. F. Lam and H. Y. Peng, “Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines,” Energy, vol. 131, pp. 13–26, 2017, doi: 10.1016/j.energy.2017.05.015.
  • [25] N. Dhandapani, K. Arul, G. Kalyanasundaram, L. Sourirajan, B. S. Arputharaj, Q. M. Al-Mdallal, M. M. Alam, B. Ganesan, and V. Raja, “A hybrid troposkein wind turbine with piezoelectric energy harvesting patches and solar panels: Design and performance evaluations,” Ain Shams Engineering Journal, vol. 16, no. 2, p. 103277, 2025, doi: 10.1016/j.asej.2025.103277.
  • [26] L.-A. Mitulet, G. Oprina, R.-A. Chihaia, S. Nicolaie, A. Nedelcu, and M. Popescu, “Wind Tunnel Testing for a New Experimental Model of Counter-rotating Wind Turbine,” Procedia Engineering, vol. 100, pp. 1141–1149, 2015, doi: 10.1016/j.proeng.2015.01.477.
  • [27] T. Stathopoulos, H. Alrawashdeh, A. Al-Quraan, B. Blocken, A. Dilimulati, M. Paraschivoiu, and P. Pilay, “Urban wind energy: Some views on potential and challenges,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 179, pp. 146–157, 2018, doi: 10.1016/j.jweia.2018.05.018.
  • [28] Q. Chen and X. Yin, “Sustainable coastal energy development: Integrated modeling of renewable energy sources for optimal economic and environmental performance,” Energy, vol. 316, p. 134504, 2025, doi: 10.1016/j.energy.2025.134504.
  • [29] A. Cınbarcı, “Fraktal geometri ve evrim,” Deneysel Tıp Araştırma Enstitüsü Dergisi, vol. 6, no. 11, pp. 101–108, 2016.
  • [30] B. B. Mandelbrot, The fractal geometry of nature. San Francisco, CA, USA: W. H. Freeman, 1982. [Online]. Available: https://lab.semi.ac.cn/library/upload/files/2019/1/412557940.pdf [Accessed: Oct. 16, 2025].
  • [31] M. D. H. T. Tehrani, M. Solaimani, and M. R. Fathollahi, “Wavefunction engineering using Mandelbrot, multicorn, and Koch’s snowflake fractal quantum rings to control the persistent current,” Chaos, Solitons & Fractals, vol. 189, pt. 2, p. 115706, 2024, doi: 10.1016/j.chaos.2024.115706.
  • [32] K. Miura, “Method of packaging and deployment of large membranes in space,” The Institute of Space and Astronautical Science Report, no. 618, pp. 1–9, 1985. [Online]. Available: https://ci.nii.ac.jp/naid/120006832687/ [Accessed: Oct. 16, 2025].
  • [33] M. Schenk and S. D. Guest, “Geometry of Miura-folded metamaterials,” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 9, pp. 3276–3281, 2013, doi: 10.1073/pnas.1217998110.
  • [34] E. Peraza Hernandez, D. Hartl, R. Malak, and D. Lagoudas, “Origami-inspired active structures: A synthesis and review,” Smart Materials and Structures, vol. 23, p. 094001, 2014, doi: 10.1088/0964-1726/23/9/094001.
  • [35] M. Ericka, D. Vasic, F. Costa, G. Poulin-Vittrant, and S. Tliba, “Energy harvesting from vibration using a piezoelectric membrane,” J. Phys. IV (Proc.), vol. 128, pp. 187–193, 2005, doi: 10.1051/jp4:2005128028.
  • [36] H. Sodano and D. Inman, “A review of power harvesting from vibration using piezoelectric materials,” Shock Vib. Dig., vol. 36, pp. 197–205, 2004, doi: 10.1177/0583102404043275.
  • [37] S. Anton and H. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart Materials and Structures, vol. 16, p. R1, 2007, doi: 10.1088/0964-1726/16/3/R01.
  • [38] Z. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano, vol. 7, 2013, doi: 10.1021/nn404614z.
  • [39] Z. Wang, “On the first principle theory of nanogenerators from Maxwell’s equations,” Nano Energy, vol. 68, p. 104272, 2019, doi: 10.1016/j.nanoen.2019.104272.
  • [40] Y. Yang, G. Zhu, H. Zhang, A. Chung, Z.-H. Lin, Y. Su, P. Bai, X. Wen, and Z. Wang, “Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,” ACS Nano, vol. 7, 2013, doi: 10.1021/nn4043157.
  • [41] R. Quintal, “Operation and faults analysis of energy-saving permanent magnet synchronous generator for small wind turbine,” ResearchGate Preprint, 2020, doi: 10.13140/RG.2.2.27528.03847.

Year 2025, Volume: 1 Issue: 2, 9 - 16, 28.11.2025

Abstract

References

  • [1] S. Mertens, “Wind energy in the built environment – concentrator effects of buildings,” Wind Engineering, vol. 30, 2006, doi: 10.1260/030952406779502623.
  • [2] M. Dakeev, Q. Mazumder, F. Yildiz, and K. Baltaci, “Design and development of a new small-scale wind turbine blade,” in Proc. ASEE Annu. Conf. Expo., Conf. Proc., vol. 122, 2015.
  • [3] H. Huang, Q. Liu, M. Yue, W. Miao, P. Wang, and C. Li, “Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions,” Renewable Energy, vol. 203, pp. 280–300, 2023, doi: 10.1016/j.renene.2022.12.060.
  • [4] H. Huang, Q. Liu, G. Iglesias, M. Yue, W. Miao, Q. Ye, C. Li, and T. Yang, “A fully-coupled analysis of the spar-type floating offshore wind turbine with bionic fractal heave plate under wind-wave excitation conditions,” Renewable Energy, vol. 232, p. 121088, 2024, doi: 10.1016/j.renene.2024.121088.
  • [5] K. F. Sagmo and P.-T. S. Storli, “An experimental study regarding the effect of streamwise vorticity on trailing edge vortex induced vibrations of a hydrofoil,” Journal of Sound and Vibration, vol. 542, p. 117349, 2023, doi: 10.1016/j.jsv.2022.117349.
  • [6] K. Hu, X. Wang, S. Zhong, C. Lu, B. Yu, L. Yang, and Y. Rao, “Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches,” Energy, vol. 289, p. 130013, 2024, doi: 10.1016/j.energy.2023.130013.
  • [7] A. M. Elsayed, O. A. Gaheen, H. Elshimy, E. Benini, and M. A. Aziz, “Bio-inspired pressure side stepped NACA 23012 C as wind turbine airfoils in low Reynolds number,” Energy Reports, vol. 13, pp. 3728–3744, 2025, doi: 10.1016/j.egyr.2025.03.029.
  • [8] A. Khedr, K. Panthi, W. U. Ahmed, F. Castellani, and G. V. Iungo, “Riblets and scales on 3D-printed wind turbine blades: Influence of surface micro-patterning properties on enhancing aerodynamic performance,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 266, p. 106188, 2025, doi: 10.1016/j.jweia.2025.106188.
  • [9] M. A. Kadhim, C. C. Phing, L. C. Wai, J. K. S. Paw, Y. C. Tak, K. Kadirgama, and A. A. Kadhim, “Performance study of low-speed wind energy harvesting by micro wind turbine system,” Energy Reports, vol. 13, pp. 3712–3727, 2025, doi: 10.1016/j.egyr.2025.02.046.
  • [10] C. V. C. Rubio, M. Kchaou, P. E. de Faria, J. C. C. Rubio, and F. Alqurashi, “Development of wind turbines for urban environment using innovative design thinking methodology,” Journal of Engineering Research, vol. 13, no. 3, pp. 1916–1923, 2025, doi: 10.1016/j.jer.2024.06.008.
  • [11] S. Liu, L. Zhang, J. Lu, Z. Liu, Z. Jing, X. Zhang, X. Cui, and H. Wang, “A novel bio-inspired ducted wind turbine: from prairie dog burrow architecture to aerodynamic performance optimization,” Renewable Energy, vol. 256, pt. B, p. 123941, 2026, doi: 10.1016/j.renene.2025.123941.
  • [12] M. H. Farhat, A. Mehdizadeh, A. Sedaghat, M. E. L. Badawy, B. Djedi, M. I. Al-Khiami, A. Mostafaeipour, and M. Nazififard, “Origami-inspired urban wind turbines: Scalable bladeless designs for decentralized renewable energy,” Green Technologies and Sustainability, vol. 4, no. 1, p. 100253, 2026, doi: 10.1016/j.grets.2025.100253.
  • [13] J. Zhang, Y. He, C. Boyer, K. Kalantar-Zadeh, S. Peng, D. Chu, and C. H. Wang, “Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters,” Nanoscale Advances, vol. 3, no. 19, pp. 5465–5486, 2021, doi: 10.1039/d1na00501d.
  • [14] M. Mariello, L. Fachechi, F. Guido, and M. De Vittorio, “Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™,” Nano Energy, vol. 83, p. 105811, 2021, doi: 10.1016/j.nanoen.2021.105811.
  • [15] L. He, Y. Han, R. Liu, R. Hu, G. Yu, and G. Cheng, “Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure,” Energy, vol. 256, p. 124675, 2022, doi: 10.1016/j.energy.2022.124675.
  • [16] P. Panpho, T. Charoonsuk, N. Vittayakorn, T. Bongkarn, and R. Sumang, “Flexible hybrid piezo/triboelectric energy harvester based on a lead-free BNT-BT-KNN ceramic-polymer composite film,” Ceramics International, vol. 50, no. 23, pt. C, pp. 52041–52050, 2024, doi: 10.1016/j.ceramint.2024.03.208.
  • [17] S. Lin, J. Kan, C. He, Y. Yu, Z. Yang, L. Zhang, J. Fu, and Z. Zhang, “A direction-parallel piezoelectric wind-induced vibration energy harvester with the transducer movement oriented toward wind direction for pipeline energy harvesting,” Energy, vol. 319, p. 135028, 2025, doi: 10.1016/j.energy.2025.135028.
  • [18] Z. Khosroshahi, F. Karimzadeh, M. H. Enayati, H. G. B. Gowda, and U. Wallrabe, “Humidity resistant triboelectric nanogenerators for wind energy harvesting: A review,” Renewable and Sustainable Energy Reviews, vol. 216, p. 115650, 2025, doi: 10.1016/j.rser.2025.115650.
  • [19] T. Ma, X. Hu, D. Wu, S. Yang, M. Wu, T. Xie, H. Lv, X. Huang, X. Xiang, and Y. Wang, “The effects of bluff body vibration mode to the output performance response of the galloping triboelectric nanogenerator for wind energy harvesting,” Sensors and Actuators A: Physical, vol. 391, p. 116662, 2025, doi: 10.1016/j.sna.2025.116662.
  • [20] F. Dong, Y. Zheng, C. Shi, Y. Cao, and Y. Zhang, “An elliptic gauge-inspired piezoelectric energy harvester for wind turbines,” Sensors and Actuators A: Physical, vol. 395, p. 117011, 2025, doi: 10.1016/j.sna.2025.117011.
  • [21] J. C. Ji, Q. Luo, and K. Ye, “Vibration control based metamaterials and origami structures: A state-of-the-art review,” Mechanical Systems and Signal Processing, vol. 161, p. 107945, 2021, doi: 10.1016/j.ymssp.2021.107945.
  • [22] S. Fang, S. Zhou, D. Yurchenko, T. Yang, and W.-H. Liao, “Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review,” Mechanical Systems and Signal Processing, vol. 166, p. 108419, 2022, doi: 10.1016/j.ymssp.2021.108419.
  • [23] A. B. S. Devin, A. Keshavarzi, A. A. Hemami, A. F. Bashipour, and H. S. Googarchin, “From Nature to Engineering: The Evolutionary Journey of Bio-Inspired Energy Absorbers Across Diverse Loading Conditions,” Thin-Walled Structures, vol. 216, pt. B, p. 113684, 2025, doi: 10.1016/j.tws.2025.113684.
  • [24] H. F. Lam and H. Y. Peng, “Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines,” Energy, vol. 131, pp. 13–26, 2017, doi: 10.1016/j.energy.2017.05.015.
  • [25] N. Dhandapani, K. Arul, G. Kalyanasundaram, L. Sourirajan, B. S. Arputharaj, Q. M. Al-Mdallal, M. M. Alam, B. Ganesan, and V. Raja, “A hybrid troposkein wind turbine with piezoelectric energy harvesting patches and solar panels: Design and performance evaluations,” Ain Shams Engineering Journal, vol. 16, no. 2, p. 103277, 2025, doi: 10.1016/j.asej.2025.103277.
  • [26] L.-A. Mitulet, G. Oprina, R.-A. Chihaia, S. Nicolaie, A. Nedelcu, and M. Popescu, “Wind Tunnel Testing for a New Experimental Model of Counter-rotating Wind Turbine,” Procedia Engineering, vol. 100, pp. 1141–1149, 2015, doi: 10.1016/j.proeng.2015.01.477.
  • [27] T. Stathopoulos, H. Alrawashdeh, A. Al-Quraan, B. Blocken, A. Dilimulati, M. Paraschivoiu, and P. Pilay, “Urban wind energy: Some views on potential and challenges,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 179, pp. 146–157, 2018, doi: 10.1016/j.jweia.2018.05.018.
  • [28] Q. Chen and X. Yin, “Sustainable coastal energy development: Integrated modeling of renewable energy sources for optimal economic and environmental performance,” Energy, vol. 316, p. 134504, 2025, doi: 10.1016/j.energy.2025.134504.
  • [29] A. Cınbarcı, “Fraktal geometri ve evrim,” Deneysel Tıp Araştırma Enstitüsü Dergisi, vol. 6, no. 11, pp. 101–108, 2016.
  • [30] B. B. Mandelbrot, The fractal geometry of nature. San Francisco, CA, USA: W. H. Freeman, 1982. [Online]. Available: https://lab.semi.ac.cn/library/upload/files/2019/1/412557940.pdf [Accessed: Oct. 16, 2025].
  • [31] M. D. H. T. Tehrani, M. Solaimani, and M. R. Fathollahi, “Wavefunction engineering using Mandelbrot, multicorn, and Koch’s snowflake fractal quantum rings to control the persistent current,” Chaos, Solitons & Fractals, vol. 189, pt. 2, p. 115706, 2024, doi: 10.1016/j.chaos.2024.115706.
  • [32] K. Miura, “Method of packaging and deployment of large membranes in space,” The Institute of Space and Astronautical Science Report, no. 618, pp. 1–9, 1985. [Online]. Available: https://ci.nii.ac.jp/naid/120006832687/ [Accessed: Oct. 16, 2025].
  • [33] M. Schenk and S. D. Guest, “Geometry of Miura-folded metamaterials,” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 9, pp. 3276–3281, 2013, doi: 10.1073/pnas.1217998110.
  • [34] E. Peraza Hernandez, D. Hartl, R. Malak, and D. Lagoudas, “Origami-inspired active structures: A synthesis and review,” Smart Materials and Structures, vol. 23, p. 094001, 2014, doi: 10.1088/0964-1726/23/9/094001.
  • [35] M. Ericka, D. Vasic, F. Costa, G. Poulin-Vittrant, and S. Tliba, “Energy harvesting from vibration using a piezoelectric membrane,” J. Phys. IV (Proc.), vol. 128, pp. 187–193, 2005, doi: 10.1051/jp4:2005128028.
  • [36] H. Sodano and D. Inman, “A review of power harvesting from vibration using piezoelectric materials,” Shock Vib. Dig., vol. 36, pp. 197–205, 2004, doi: 10.1177/0583102404043275.
  • [37] S. Anton and H. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart Materials and Structures, vol. 16, p. R1, 2007, doi: 10.1088/0964-1726/16/3/R01.
  • [38] Z. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano, vol. 7, 2013, doi: 10.1021/nn404614z.
  • [39] Z. Wang, “On the first principle theory of nanogenerators from Maxwell’s equations,” Nano Energy, vol. 68, p. 104272, 2019, doi: 10.1016/j.nanoen.2019.104272.
  • [40] Y. Yang, G. Zhu, H. Zhang, A. Chung, Z.-H. Lin, Y. Su, P. Bai, X. Wen, and Z. Wang, “Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,” ACS Nano, vol. 7, 2013, doi: 10.1021/nn4043157.
  • [41] R. Quintal, “Operation and faults analysis of energy-saving permanent magnet synchronous generator for small wind turbine,” ResearchGate Preprint, 2020, doi: 10.13140/RG.2.2.27528.03847.
There are 41 citations in total.

Details

Primary Language English
Subjects Wind Energy Systems, Energy Efficiency
Journal Section Research Article
Authors

Mert Ökten 0000-0003-0077-4471

Publication Date November 28, 2025
Submission Date October 16, 2025
Acceptance Date November 7, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

IEEE M. Ökten, “A Micro Turbine Blade Design for Urban Use Optimized with Fractal Geometry and Miura-Ori Folding Principles, Converting Vibration and Noise into Energy Using Piezoelectric and Triboelectric Materials”, JDEU, vol. 1, no. 2, pp. 9–16, 2025.