Research Article
BibTex RIS Cite

Vibration Analysis of Functionally Graded Euler-Bernoulli Beams under Uniform Thermal Loading by Using Differential Quadrature Method

Year 2025, Volume: 1 Issue: 2, 35 - 50, 28.11.2025

Abstract

In the last few decades, the use of functionally graded materials has become increasingly popular in various engineering applications exposed to high temperatures due to their thermal resistance, smooth transition in their mechanical properties, and superior ability to minimize thermal stresses. In this study, the dynamic characteristics of beam structures with uniform cross sections are investigated for different boundary conditions, slenderness ratios, temperature-dependent material properties, composition of the structure, and temperatures. Applying Hamilton’s principle, the governing equation is derived for the Euler-Bernoulli beam structures made of functionally graded materials. Then, the governing differential equation is solved by employing the generalized differential quadrature method. In this numerical solution technique, classical boundary conditions and the equation of vibration motion are transformed into a set of linear algebraic equations stated in orthogonal matrix form. Ultimately, the obtained numerical results are presented in the relevant figures and tables to show the influence of operating environment and boundary conditions on the dynamic behavior of the beam, in addition to the influence of the composition of the ceramic-metal mixtures, and interactions of other structural design parameters with each other. The findings show that increasing temperature and gradiation index significantly reduce the natural frequencies due to thermal softening effects, while changes in boundary conditions and slenderness ratios strongly influence the overall vibration response. These results highlight the importance of incorporating temperature-dependent material behavior and gradient composition in the accurate prediction and optimization of the dynamic performance of functionally graded beam structures.

Ethical Statement

This article has no conflicts of interest with any individual or institution. This article does not require ethics committee approval.

Thanks

This study was produced from the Doctorate’s Thesis conducted by Mustafa Tolga YAVUZ under the supervision of Prof. Dr. Ibrahim OZKOL. The authors would like to thank Prof. Dr. Ibrahim OZKOL from the Department of Aeronautical Engineering in Istanbul Technical University for suggestions and discussions.

References

  • [1] V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., vol. 60, no. 5, pp. 195–216, 2007, doi: 10.1115/1.2777164.
  • [2] N. Noda, “Thermal stresses in functionally graded materials,” J. Thermal Stresses, vol. 22, no. 4–5, pp. 477–512, 1999, doi: 10.1080/014957399280841
  • [3] W. Y. Lee, D. P. Stinton, C. C. Berndt, F. Erdogan, and Y.-D. Lee, “Concept of functionally graded materials for advanced thermal barrier coating applications,” J. Amer. Ceram. Soc., vol. 79, no. 11, pp. 3003–3012, 1996, doi: 10.1111/j.1151-2916.1996.tb08070.x
  • [4] G. Udupa, S. S. Rao, and K. Gangadharan, “Functionally graded composite materials: An overview,” Procedia Mater. Sci., vol. 5, pp. 1291–1299, 2014, doi: 10.1016/j.mspro.2014.07.442.
  • [5] A. Stere and L. Librescu, “Nonlinear thermoaeroelastic modeling of advanced aircraft wings made of functionally graded materials,” in Proc. 41st Structures, Structural Dynamics, and Materials Conf., Atlanta, GA, USA, 2000, doi: 10.2514/6.2000-1336
  • [6] B. Saleh et al., “30 Years of functionally graded materials: An overview of manufacturing methods, applications, and future challenges,” Compos. Part B: Eng., vol. 201, p. 108376, 2020, doi: 10.1016/j.compositesb.2020.108376
  • [7] S. A. Sina, H. M. Navazi, ve H. Haddadpour, “An Analytical Method for Free Vibration Analysis of Functionally Graded Beams,” Materials & Design, vol. 30, no. 3, pp. 741–747, 2009, doi:10.1016/j.matdes.2008.05.015
  • [8] A. Mahi, E. A. Adda Bedia, A. Tounsi, and I. Mechab, “An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions,” Composite Structures, vol. 92, no. 8, pp. 1877–1887, Jul. 2010, doi: 10.1016/j.compstruct.2010.01.010
  • [9] N. Pradhan and S. K. Sarangi, “Free vibration analysis of functionally graded beams by finite element method,” IOP Conference Series: Materials Science and Engineering, vol. 377, p. 012211, Dec. 2017, doi: 10.1088/1757-899X/377/1/012211.
  • [10] A. E. Alshorbagy, M. A. Eltaher, and F. F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 412–425, Jan. 2011, doi: 10.1016/j.apm.2010.07.006.
  • [11] J. W. Lee and J. Y. Lee, “Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression,” International Journal of Mechanical Sciences, vol. 122, pp. 1–17, Mar. 2017, doi: 10.1016/j.ijmecsci.2017.01.011.
  • [12] F. Ebrahimi and M. Mokhtari, “Free vibration analysis of a rotating Mori–Tanaka-based functionally graded beam via differential transformation method,” Arabian Journal for Science and Engineering, vol. 41, pp. 577–590, 2016, doi: 10.1007/s13369-015-1689-7.
  • [13] D. Ghazaryan, V. N. Burlayenko, A. Avetisyan, and others, “Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method,” Journal of Engineering Mathematics, vol. 110, pp. 97–121, 2018, doi: 10.1007/s10665-017-9937-3
  • [14] K. K. Pradhan and S. Chakraverty, “Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method,” Composites Part B: Engineering, vol. 51, pp. 175–184, Aug. 2013, doi: 10.1016/j.compositesb.2013.02.027.
  • [15] K. Celebi, D. Yarimpabuc, and N. Tutuncu, “Free vibration analysis of functionally graded beams using complementary functions method,” Archive of Applied Mechanics, vol. 88, pp. 729–739, 2018, doi: 10.1007/s00419-017-1338-6.
  • [16] J. R. Banerjee and A. Ananthapuvirajah, “Free vibration of functionally graded beams and frameworks using the dynamic stiffness method,” Journal of Sound and Vibration, vol. 422, pp. 34–47, May 2018, doi: 10.1016/j.jsv.2018.02.010
  • [17] H. Su, J. R. Banerjee, and C. W. Cheung, “Dynamic stiffness formulation and free vibration analysis of functionally graded beams,” Composite Structures, vol. 106, pp. 854–862, Dec. 2013, doi: 10.1016/j.compstruct.2013.06.029.
  • [18] A. N. Diambu and M. Çevik, “Finite element vibrational analysis of a porous functionally graded plate,” in Proc. 6th Int. Students Sci. Congr., İzmir, Türkiye, 2022, doi: 10.52460/issc.2022.041.
  • [19] M. Ermiş, G. Aydogan, O. Kir, U. N. Aribas, and M. H. Omurtag, “The static and free vibration analyses of axially functionally graded elliptical beams via mixed FEM,” J. Struct. Eng. Appl. Mech., vol. 5, no. 1, pp. 22–39, 2022, doi: 10.31462/jseam.2022.01022039.
  • [20] H. Kurtaran, “Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method,” Compos. Struct., vol. 131, pp. 821–831, 2015, doi: 10.1016/j.compstruct.2015.06.024.
  • [21] U. Özmen and B. B. Özhan, “Computational modeling of functionally graded beams: A novel approach,” J. Vib. Eng. Technol., vol. 10, pp. 2693–2701, 2022, doi: 10.1007/s42417-022-00515-x.
  • [22] G. G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera, “Hierarchical theories for the free vibration analysis of functionally graded beams,” Composite Structures, vol. 94, no. 1, pp. 68–74, Jan. 2011, doi: 10.1016/j.compstruct.2011.07.016
  • [23] R. Kadoli, K. Akhtar, and N. Ganesan, “Static analysis of functionally graded beams using higher order shear deformation theory,” Applied Mathematical Modelling, vol. 32, no. 12, pp. 2509–2525, Dec. 2008, doi: 10.1016/j.apm.2007.09.015
  • [24] X. Wang and S. Li, “Free vibration analysis of functionally graded material beams based on Levinson beam theory,” Applied Mathematics and Mechanics (English Edition), vol. 37, pp. 861–878, 2016, doi: 10.1007/s10483-016-2094-9.
  • [25] M. Şimşek, “Vibration analysis of a functionally graded beam under a moving mass by using different beam theories,” Composite Structures, vol. 92, no. 4, pp. 904–917, Mar. 2010, doi: 10.1016/j.compstruct.2009.09.030.
  • [26] W.-R. Chen and H. Chang, “Vibration analysis of functionally graded Timoshenko beams,” International Journal of Structural Stability and Dynamics, vol. 18, no. 01, p. 1850007, 2018, doi: 10.1142/S0219455418500074.
  • [27] T. P. Vo, H. T. Thai, T. K. Nguyen, et al., “Static and vibration analysis of functionally graded beams using refined shear deformation theory,” Meccanica, vol. 49, pp. 155–168, 2014, doi: 10.1007/s11012-013-9780-1.
  • [28] T. A. Aslan, A. R. Noori, and B. Temel, “Çift yönlü fonksiyonel derecelenmiş malzemeli Timoshenko kirişlerinin serbest titreşim analizi,” Ömer Halisdemir Univ. Eng. Sci. J., vol. 8, no. 3, pp. 30–36, 2019, doi: 10.28948/ngumuh.621183.
  • [29] A. Shahba, R. Attarnejad, M. Tavanaie Marvi, and S. Hajilar, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions,” Composites Part B: Engineering, vol. 42, no. 4, pp. 801–808, Jun. 2011, doi: 10.1016/j.compositesb.2011.01.017
  • [30] M. Aydoğdu and V. Taşkın, “Vibration analysis of simply supported functionally graded beams,” in Vibration Problems ICOVP 2005, E. İnan and A. Kırış, Eds., Springer Proceedings in Physics, vol. 111. Dordrecht: Springer, 2006, pp. 87–94, doi: 10.1007/978-1-4020-5401-3_11
  • [31] H. U. Choe, J. Zhang, W. Kim, et al., “Free vibration analysis of functionally graded straight-curved-straight beam with general boundary conditions,” Journal of Vibration Engineering & Technologies, vol. 12, pp. 2295–2317, 2024, doi: 10.1007/s42417-023-00980-y.
  • [32] C. Demir and F. E. Oz, “Free vibration analysis of a functionally graded viscoelastic supported beam,” Journal of Vibration and Control, vol. 20, no. 16, pp. 2464–2486, 2013, doi: 10.1177/1077546313479634.
  • [33] H. Ait Atmane, A. Tounsi, S. A. Meftah, and H. A. Belhadj, “Free vibration behavior of exponential functionally graded beams with varying cross-section,” Journal of Vibration and Control, vol. 17, no. 2, pp. 311–318, 2010, doi: 10.1177/1077546310370691.
  • [34] S. Shabani and Y. Cunedioglu, “Free vibration analysis of cracked functionally graded non-uniform beams,” Materials Research Express, vol. 7, no. 1, p. 015707, Jan. 2020, doi: 10.1088/2053-1591/ab6ad1.
  • [35] N. Wattanasakulpong, B. G. Prusty, D. W. Kelly, and M. Hoffman, “Free vibration analysis of layered functionally graded beams with experimental validation,” Materials & Design, vol. 36, pp. 182–190, Apr. 2012, doi: 10.1016/j.matdes.2011.10.049.
  • [36] G. Adıyaman, E. Öner, M. Yaylacı, and A. Birinci, “A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force,” J. Mech. Mater. Struct., vol. 18, no. 1, pp. 125–141, 2023, doi: 10.2140/jomms.2023.18.125.
  • [37] I. Barbaros, Y. Yang, B. Safaei, Z. Yang, Z. Qin, and M. Asmael, “State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials,” Nanotechnol. Rev., vol. 11, no. 1, pp. 321–371, 2022, doi: 10.1515/ntrev-2022-0017.
  • [38] M. D. Demirbaş and D. Çakır, “Modeling of 2D functionally graded circular plates with artificial neural network,” Int. Sci. Vocational Stud. J., vol. 4, no. 2, pp. 97–110, 2020, doi: 10.47897/bilmes.840471.
  • [39] M. A. Koç, İ. Esen, and M. Eroğlu, “Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity,” Mech. Adv. Mater. Struct., vol. 31, no. 18, pp. 4477–4509, 2024, doi: 10.1080/15376494.2023.2199412.
  • [40] S. Sınır, M. Çevik, and B. G. Sınır, “Nonlinear free and forced vibration analyses of axially functionally graded Euler–Bernoulli beams with non-uniform cross-section,” Compos. B Eng., vol. 148, pp. 123–131, 2018, doi: 10.1016/j.compositesb.2018.04.061.
  • [41] P. Zahedinejad, C. Zhang, H. Zhang, and S. Ju, “A comprehensive review on vibration analysis of functionally graded beams,” International Journal of Structural Stability and Dynamics, vol. 20, no. 04, p. 2030002, 2020, doi: 10.1142/S0219455420300025.
  • [42] K. Swaminathan and D. M. Sangeetha, “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods,” Composite Structures, vol. 160, pp. 43–60, 2017. doi: 10.1016/j.compstruct.2016.10.047.
  • [43] Y. S. Touloukian, “Thermophysical Properties of High Temperature Solid Materials,” Technical Report AD0649950, Wright-Patterson Air Force Base, OH, USA, 1967.
  • [44] J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” Journal of Thermal Stresses, vol. 21, pp. 593–626, 1998. doi: 10.1080/01495739808956165.
  • [45] A. Paul and D. Das, “Nonlinear thermal postbuckling analysis of FGM Timoshenko beam under nonuniform temperature rise across thickness,” Engineering Science and Technology, vol. 19, pp. 1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.
  • [46] M. T. Yavuz, “Vibration analysis of rotating beam structures made of functionally graded materials in a thermal environment by generalized differential quadrature method,” Ph.D. dissertation, Dept. of Aeronautical and Astronautical Engineering, Istanbul Technical University, Istanbul, Turkey, 2024.
  • [47] R. Bellman, B. G. Kashef, and J. Casti, “Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations,” Journal of Computational Physics, vol. 10, no. 1, pp. 40–52, Aug. 1972, doi: 10.1016/0021-9991(72)90089-7.
  • [48] F. Civan and C. M. Sliepcevich, “Differential quadrature for multi-dimensional problems,” Journal of Mathematical Analysis and Applications, vol. 101, no. 2, pp. 423–443, Jul. 1984, doi: 10.1016/0022-247X(84)90111-2.
  • [49] X. Wang and C. W. Bert, “A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates,” Journal of Sound and Vibration, vol. 162, no. 3, pp. 566–572, Apr. 1993, doi: 10.1006/jsvi.1993.1143.
  • [50] X. Wang, C. W. Bert, and A. G. Striz, “Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates,” Computers & Structures, vol. 48, no. 3, pp. 473–479, Aug. 1993, doi: 10.1016/0045-7949(93)90324-7.
  • [51] H. Du, M. K. Lim, and R. M. Lin, “Application of generalized differential quadrature method to structural problems,” International Journal for Numerical Methods in Engineering, vol. 37, pp. 1881–1896, Jun. 1994, doi: 10.1002/nme.1620371107.
  • [52] H. Du, M. K. Lim, and R. M. Lin, “Application of generalized differential quadrature to vibration analysis,” Journal of Sound and Vibration, vol. 181, no. 2, pp. 279–293, Mar. 1995, doi: 10.1006/jsvi.1995.0140.
  • [53] C. W. Bert and M. Malik, “Semianalytical differential quadrature solution for free vibration analysis of rectangular plates,” AIAA Journal, vol. 34, no. 3, pp. 600–605, Mar. 1996, doi: 10.2514/3.13110.
  • [54] C. Shu and H. Du, “Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates,” International Journal of Solids and Structures, vol. 34, no. 7, pp. 819–835, Mar. 1997, doi: 10.1016/S0020-7683(96)00057-1.
  • [55] M. T. Yavuz and İ. Ozkol, “Comparison of some numerical approaches for determination of dynamic characteristics in beam and plate elements,” European Journal of Science and Technology, vol. 28, pp. 1454–1468, Nov. 2021, doi: 10.31590/ejosat.1011242.

Isıl Yükleme Altında Fonksiyonel Olarak Derecelendirilmiş Euler-Bernoulli Kirişlerinin Diferansiyel Kareleme Yöntemi Kullanılarak Dinamik Analizi

Year 2025, Volume: 1 Issue: 2, 35 - 50, 28.11.2025

Abstract

Son yıllarda gerek çeşitli mühendislik dalları gerekse havacılık sektöründe yüksek sıcaklığa maruz kalan yapılarda fonksiyonel derecelendirilmiş malzeme ile kaplı yapıların kullanımında artış görülmektedir. Bu malzemelerin ısıl gerilmeleri azaltmadaki başarısı, mekanik özellikler arasında yumuşak geçiş sunması ve ısıl şoklara karşı direnç sağlaması gibi sebepler bunda etkili olmuştur. Bu amaçla bu çalışmada, düzgün kesit alanına sahip Euler-Bernoulli kiriş teorisine göre modellenen kiriş yapıların yüksek sıcaklığa maruz kalması halinde dinamik karakteristikleri incelenmiştir. Ayrıca, farklı geometrik sınır şartları, çeşitli malzeme bileşimleri ve narinlik oranı gibi kiriş yapının titreşim cevabını etkileyen yapısal etmenlerin de frekans ve mod şekillerini nasıl değiştirdiği incelenmektedir. Titreşim hareketini açıklayan yönetici denklem, Hamilton prensibinden faydalanarak çıkarılmış ve diferansiyel kareleme yönteminden faydalanarak çözülmüştür. Elde edilen sonuçlar, artan sıcaklık ve seramik malzeme oranın frekans değerlerini azalttığını göstermektedir. Bu sonuçlar yüksek sıcaklığa maruz kalan kiriş yapılarında doğru malzeme oranının, geometrik sınır şartının ve narinlik oranının seçilmesine yardımcı olacağı için önemlidir.

Thanks

Prof.Dr.Ibrahim Ozkol'a bu yayının hazırlanmasına sağladığı destekten dolayı teşekkür ederiz.

References

  • [1] V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., vol. 60, no. 5, pp. 195–216, 2007, doi: 10.1115/1.2777164.
  • [2] N. Noda, “Thermal stresses in functionally graded materials,” J. Thermal Stresses, vol. 22, no. 4–5, pp. 477–512, 1999, doi: 10.1080/014957399280841
  • [3] W. Y. Lee, D. P. Stinton, C. C. Berndt, F. Erdogan, and Y.-D. Lee, “Concept of functionally graded materials for advanced thermal barrier coating applications,” J. Amer. Ceram. Soc., vol. 79, no. 11, pp. 3003–3012, 1996, doi: 10.1111/j.1151-2916.1996.tb08070.x
  • [4] G. Udupa, S. S. Rao, and K. Gangadharan, “Functionally graded composite materials: An overview,” Procedia Mater. Sci., vol. 5, pp. 1291–1299, 2014, doi: 10.1016/j.mspro.2014.07.442.
  • [5] A. Stere and L. Librescu, “Nonlinear thermoaeroelastic modeling of advanced aircraft wings made of functionally graded materials,” in Proc. 41st Structures, Structural Dynamics, and Materials Conf., Atlanta, GA, USA, 2000, doi: 10.2514/6.2000-1336
  • [6] B. Saleh et al., “30 Years of functionally graded materials: An overview of manufacturing methods, applications, and future challenges,” Compos. Part B: Eng., vol. 201, p. 108376, 2020, doi: 10.1016/j.compositesb.2020.108376
  • [7] S. A. Sina, H. M. Navazi, ve H. Haddadpour, “An Analytical Method for Free Vibration Analysis of Functionally Graded Beams,” Materials & Design, vol. 30, no. 3, pp. 741–747, 2009, doi:10.1016/j.matdes.2008.05.015
  • [8] A. Mahi, E. A. Adda Bedia, A. Tounsi, and I. Mechab, “An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions,” Composite Structures, vol. 92, no. 8, pp. 1877–1887, Jul. 2010, doi: 10.1016/j.compstruct.2010.01.010
  • [9] N. Pradhan and S. K. Sarangi, “Free vibration analysis of functionally graded beams by finite element method,” IOP Conference Series: Materials Science and Engineering, vol. 377, p. 012211, Dec. 2017, doi: 10.1088/1757-899X/377/1/012211.
  • [10] A. E. Alshorbagy, M. A. Eltaher, and F. F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 412–425, Jan. 2011, doi: 10.1016/j.apm.2010.07.006.
  • [11] J. W. Lee and J. Y. Lee, “Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression,” International Journal of Mechanical Sciences, vol. 122, pp. 1–17, Mar. 2017, doi: 10.1016/j.ijmecsci.2017.01.011.
  • [12] F. Ebrahimi and M. Mokhtari, “Free vibration analysis of a rotating Mori–Tanaka-based functionally graded beam via differential transformation method,” Arabian Journal for Science and Engineering, vol. 41, pp. 577–590, 2016, doi: 10.1007/s13369-015-1689-7.
  • [13] D. Ghazaryan, V. N. Burlayenko, A. Avetisyan, and others, “Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method,” Journal of Engineering Mathematics, vol. 110, pp. 97–121, 2018, doi: 10.1007/s10665-017-9937-3
  • [14] K. K. Pradhan and S. Chakraverty, “Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method,” Composites Part B: Engineering, vol. 51, pp. 175–184, Aug. 2013, doi: 10.1016/j.compositesb.2013.02.027.
  • [15] K. Celebi, D. Yarimpabuc, and N. Tutuncu, “Free vibration analysis of functionally graded beams using complementary functions method,” Archive of Applied Mechanics, vol. 88, pp. 729–739, 2018, doi: 10.1007/s00419-017-1338-6.
  • [16] J. R. Banerjee and A. Ananthapuvirajah, “Free vibration of functionally graded beams and frameworks using the dynamic stiffness method,” Journal of Sound and Vibration, vol. 422, pp. 34–47, May 2018, doi: 10.1016/j.jsv.2018.02.010
  • [17] H. Su, J. R. Banerjee, and C. W. Cheung, “Dynamic stiffness formulation and free vibration analysis of functionally graded beams,” Composite Structures, vol. 106, pp. 854–862, Dec. 2013, doi: 10.1016/j.compstruct.2013.06.029.
  • [18] A. N. Diambu and M. Çevik, “Finite element vibrational analysis of a porous functionally graded plate,” in Proc. 6th Int. Students Sci. Congr., İzmir, Türkiye, 2022, doi: 10.52460/issc.2022.041.
  • [19] M. Ermiş, G. Aydogan, O. Kir, U. N. Aribas, and M. H. Omurtag, “The static and free vibration analyses of axially functionally graded elliptical beams via mixed FEM,” J. Struct. Eng. Appl. Mech., vol. 5, no. 1, pp. 22–39, 2022, doi: 10.31462/jseam.2022.01022039.
  • [20] H. Kurtaran, “Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method,” Compos. Struct., vol. 131, pp. 821–831, 2015, doi: 10.1016/j.compstruct.2015.06.024.
  • [21] U. Özmen and B. B. Özhan, “Computational modeling of functionally graded beams: A novel approach,” J. Vib. Eng. Technol., vol. 10, pp. 2693–2701, 2022, doi: 10.1007/s42417-022-00515-x.
  • [22] G. G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera, “Hierarchical theories for the free vibration analysis of functionally graded beams,” Composite Structures, vol. 94, no. 1, pp. 68–74, Jan. 2011, doi: 10.1016/j.compstruct.2011.07.016
  • [23] R. Kadoli, K. Akhtar, and N. Ganesan, “Static analysis of functionally graded beams using higher order shear deformation theory,” Applied Mathematical Modelling, vol. 32, no. 12, pp. 2509–2525, Dec. 2008, doi: 10.1016/j.apm.2007.09.015
  • [24] X. Wang and S. Li, “Free vibration analysis of functionally graded material beams based on Levinson beam theory,” Applied Mathematics and Mechanics (English Edition), vol. 37, pp. 861–878, 2016, doi: 10.1007/s10483-016-2094-9.
  • [25] M. Şimşek, “Vibration analysis of a functionally graded beam under a moving mass by using different beam theories,” Composite Structures, vol. 92, no. 4, pp. 904–917, Mar. 2010, doi: 10.1016/j.compstruct.2009.09.030.
  • [26] W.-R. Chen and H. Chang, “Vibration analysis of functionally graded Timoshenko beams,” International Journal of Structural Stability and Dynamics, vol. 18, no. 01, p. 1850007, 2018, doi: 10.1142/S0219455418500074.
  • [27] T. P. Vo, H. T. Thai, T. K. Nguyen, et al., “Static and vibration analysis of functionally graded beams using refined shear deformation theory,” Meccanica, vol. 49, pp. 155–168, 2014, doi: 10.1007/s11012-013-9780-1.
  • [28] T. A. Aslan, A. R. Noori, and B. Temel, “Çift yönlü fonksiyonel derecelenmiş malzemeli Timoshenko kirişlerinin serbest titreşim analizi,” Ömer Halisdemir Univ. Eng. Sci. J., vol. 8, no. 3, pp. 30–36, 2019, doi: 10.28948/ngumuh.621183.
  • [29] A. Shahba, R. Attarnejad, M. Tavanaie Marvi, and S. Hajilar, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions,” Composites Part B: Engineering, vol. 42, no. 4, pp. 801–808, Jun. 2011, doi: 10.1016/j.compositesb.2011.01.017
  • [30] M. Aydoğdu and V. Taşkın, “Vibration analysis of simply supported functionally graded beams,” in Vibration Problems ICOVP 2005, E. İnan and A. Kırış, Eds., Springer Proceedings in Physics, vol. 111. Dordrecht: Springer, 2006, pp. 87–94, doi: 10.1007/978-1-4020-5401-3_11
  • [31] H. U. Choe, J. Zhang, W. Kim, et al., “Free vibration analysis of functionally graded straight-curved-straight beam with general boundary conditions,” Journal of Vibration Engineering & Technologies, vol. 12, pp. 2295–2317, 2024, doi: 10.1007/s42417-023-00980-y.
  • [32] C. Demir and F. E. Oz, “Free vibration analysis of a functionally graded viscoelastic supported beam,” Journal of Vibration and Control, vol. 20, no. 16, pp. 2464–2486, 2013, doi: 10.1177/1077546313479634.
  • [33] H. Ait Atmane, A. Tounsi, S. A. Meftah, and H. A. Belhadj, “Free vibration behavior of exponential functionally graded beams with varying cross-section,” Journal of Vibration and Control, vol. 17, no. 2, pp. 311–318, 2010, doi: 10.1177/1077546310370691.
  • [34] S. Shabani and Y. Cunedioglu, “Free vibration analysis of cracked functionally graded non-uniform beams,” Materials Research Express, vol. 7, no. 1, p. 015707, Jan. 2020, doi: 10.1088/2053-1591/ab6ad1.
  • [35] N. Wattanasakulpong, B. G. Prusty, D. W. Kelly, and M. Hoffman, “Free vibration analysis of layered functionally graded beams with experimental validation,” Materials & Design, vol. 36, pp. 182–190, Apr. 2012, doi: 10.1016/j.matdes.2011.10.049.
  • [36] G. Adıyaman, E. Öner, M. Yaylacı, and A. Birinci, “A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force,” J. Mech. Mater. Struct., vol. 18, no. 1, pp. 125–141, 2023, doi: 10.2140/jomms.2023.18.125.
  • [37] I. Barbaros, Y. Yang, B. Safaei, Z. Yang, Z. Qin, and M. Asmael, “State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials,” Nanotechnol. Rev., vol. 11, no. 1, pp. 321–371, 2022, doi: 10.1515/ntrev-2022-0017.
  • [38] M. D. Demirbaş and D. Çakır, “Modeling of 2D functionally graded circular plates with artificial neural network,” Int. Sci. Vocational Stud. J., vol. 4, no. 2, pp. 97–110, 2020, doi: 10.47897/bilmes.840471.
  • [39] M. A. Koç, İ. Esen, and M. Eroğlu, “Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity,” Mech. Adv. Mater. Struct., vol. 31, no. 18, pp. 4477–4509, 2024, doi: 10.1080/15376494.2023.2199412.
  • [40] S. Sınır, M. Çevik, and B. G. Sınır, “Nonlinear free and forced vibration analyses of axially functionally graded Euler–Bernoulli beams with non-uniform cross-section,” Compos. B Eng., vol. 148, pp. 123–131, 2018, doi: 10.1016/j.compositesb.2018.04.061.
  • [41] P. Zahedinejad, C. Zhang, H. Zhang, and S. Ju, “A comprehensive review on vibration analysis of functionally graded beams,” International Journal of Structural Stability and Dynamics, vol. 20, no. 04, p. 2030002, 2020, doi: 10.1142/S0219455420300025.
  • [42] K. Swaminathan and D. M. Sangeetha, “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods,” Composite Structures, vol. 160, pp. 43–60, 2017. doi: 10.1016/j.compstruct.2016.10.047.
  • [43] Y. S. Touloukian, “Thermophysical Properties of High Temperature Solid Materials,” Technical Report AD0649950, Wright-Patterson Air Force Base, OH, USA, 1967.
  • [44] J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” Journal of Thermal Stresses, vol. 21, pp. 593–626, 1998. doi: 10.1080/01495739808956165.
  • [45] A. Paul and D. Das, “Nonlinear thermal postbuckling analysis of FGM Timoshenko beam under nonuniform temperature rise across thickness,” Engineering Science and Technology, vol. 19, pp. 1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.
  • [46] M. T. Yavuz, “Vibration analysis of rotating beam structures made of functionally graded materials in a thermal environment by generalized differential quadrature method,” Ph.D. dissertation, Dept. of Aeronautical and Astronautical Engineering, Istanbul Technical University, Istanbul, Turkey, 2024.
  • [47] R. Bellman, B. G. Kashef, and J. Casti, “Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations,” Journal of Computational Physics, vol. 10, no. 1, pp. 40–52, Aug. 1972, doi: 10.1016/0021-9991(72)90089-7.
  • [48] F. Civan and C. M. Sliepcevich, “Differential quadrature for multi-dimensional problems,” Journal of Mathematical Analysis and Applications, vol. 101, no. 2, pp. 423–443, Jul. 1984, doi: 10.1016/0022-247X(84)90111-2.
  • [49] X. Wang and C. W. Bert, “A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates,” Journal of Sound and Vibration, vol. 162, no. 3, pp. 566–572, Apr. 1993, doi: 10.1006/jsvi.1993.1143.
  • [50] X. Wang, C. W. Bert, and A. G. Striz, “Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates,” Computers & Structures, vol. 48, no. 3, pp. 473–479, Aug. 1993, doi: 10.1016/0045-7949(93)90324-7.
  • [51] H. Du, M. K. Lim, and R. M. Lin, “Application of generalized differential quadrature method to structural problems,” International Journal for Numerical Methods in Engineering, vol. 37, pp. 1881–1896, Jun. 1994, doi: 10.1002/nme.1620371107.
  • [52] H. Du, M. K. Lim, and R. M. Lin, “Application of generalized differential quadrature to vibration analysis,” Journal of Sound and Vibration, vol. 181, no. 2, pp. 279–293, Mar. 1995, doi: 10.1006/jsvi.1995.0140.
  • [53] C. W. Bert and M. Malik, “Semianalytical differential quadrature solution for free vibration analysis of rectangular plates,” AIAA Journal, vol. 34, no. 3, pp. 600–605, Mar. 1996, doi: 10.2514/3.13110.
  • [54] C. Shu and H. Du, “Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates,” International Journal of Solids and Structures, vol. 34, no. 7, pp. 819–835, Mar. 1997, doi: 10.1016/S0020-7683(96)00057-1.
  • [55] M. T. Yavuz and İ. Ozkol, “Comparison of some numerical approaches for determination of dynamic characteristics in beam and plate elements,” European Journal of Science and Technology, vol. 28, pp. 1454–1468, Nov. 2021, doi: 10.31590/ejosat.1011242.
There are 55 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Solid Mechanics, Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Mustafa Tolga Yavuz 0000-0001-7728-3713

Caglar Uyulan 0000-0002-6423-6720

Sercan Acarer 0000-0002-5891-7458

İbrahim Ozkol 0000-0002-9300-9092

Publication Date November 28, 2025
Submission Date October 27, 2025
Acceptance Date November 23, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

IEEE M. T. Yavuz, C. Uyulan, S. Acarer, and İ. Ozkol, “Vibration Analysis of Functionally Graded Euler-Bernoulli Beams under Uniform Thermal Loading by Using Differential Quadrature Method”, JDEU, vol. 1, no. 2, pp. 35–50, 2025.