Purpose - Financial failure causes to negative effects upon not only life course of enterprises but also a great number of stakeholders such as owner or partners of an enterprise, government, investor, institutions and organizations providing the enterprise with credit. Together change in information and communication technologies, in financial failure prediction studies the place of artificial intelligence applications is increasingly. Objective of this study is to develop a model -with artificial neural networks that is one of the artificial intelligence applications- regarding to estimating financial situations by benefiting from financial statements (tables) of enterprises being traded at Borsa İstanbul, Turkey and to measure estimation competency of this developed model.
Methodology - Within the context of the study, an estimation model was developed on the basis of financial statements.
Findings- Sample was classified into two sub-groups as training set and test set in the model, in which one-year-before-failure financial statements of enterprises, which failed financially, were benefited. Afterwards estimation competency of the network, which was trained with training set, was measured through test set.
Conclusion- In conclusion, according to obtained findings, it was observed that the model artificial neural networks delivered a high performance in estimating financial failure over selected sample.
Amaç - Finansal başarısızlık hem işletmelerin hayat seyirleri üzerinde hem de işletmenin sahip veya ortakları, devlet, yatırımcı, işletmeye kredi sağlayan kurum ve kuruluşlar gibi çok sayıda paydaş üzerinde olumsuz etkilere neden olmaktadır. Finansal başarısızlık tahmin çalışmalarında günümüzde bilgi ve iletişim teknolojilerinde yaşanan değişimle birlikte yapay zekâ uygulamalarının yeri gittikçe artmaktadır. Bu çalışmanın amacı, yapay zekâ uygulamalarından biri olan yapay sinir ağları ile Türkiye’de Borsa İstanbul’da işlem gören işletmelerin finansal tablolarından yararlanarak finansal durumlarının tahmin edilmesine yönelik bir model geliştirmek ve geliştirilen bu modelin tahmin gücünü ölçmektir.
Yöntem - Çalışma kapsamında, işletmelerin finansal tablo verileri üzerinde, yapay sinir ağları kullanılarak tahmin modeli geliştirilmiştir.
Bulgular- Finansal başarısız olan işletmelerin başarısızlıktan bir yıl önceki finansal tablo verilerinin kullanıldığı modelde örneklem, eğitim seti ve test seti olmak üzere iki alt kümeye ayrılmıştır. Sonrasında ise eğitim seti ile eğitilen ağın test seti üzerinden tahmin gücü ölçülmüştür.
Sonuç- Sonuç olarak, elde edilen bulgulara göre, yapay sinir ağları modelinin seçilen örneklem üzerinde finansal başarısızlığı tahmin etmede yüksek bir performans gösterdiği görülmüştür.
Primary Language | Turkish |
---|---|
Subjects | Finance, Business Administration |
Journal Section | Articles |
Authors | |
Publication Date | March 30, 2021 |
Published in Issue | Year 2021 |
Journal of Economics, Finance and Accounting (JEFA) is a scientific, academic, double blind peer-reviewed, quarterly and open-access online journal. The journal publishes four issues a year. The issuing months are March, June, September and December. The publication languages of the Journal are English and Turkish. JEFA aims to provide a research source for all practitioners, policy makers, professionals and researchers working in the area of economics, finance, accounting and auditing. The editor in chief of JEFA invites all manuscripts that cover theoretical and/or applied researches on topics related to the interest areas of the Journal. JEFA publishes academic research studies only. JEFA charges no submission or publication fee.
Ethics Policy - JEFA applies the standards of Committee on Publication Ethics (COPE). JEFA is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarized will not be accepted or if published will be removed from the publication. Authors must certify that their manuscripts are their original work. Plagiarism, duplicate, data fabrication and redundant publications are forbidden. The manuscripts are subject to plagiarism check by iThenticate or similar. All manuscript submissions must provide a similarity report (up to 15% excluding quotes, bibliography, abstract and method).
Open Access - All research articles published in PressAcademia Journals are fully open access; immediately freely available to read, download and share. Articles are published under the terms of a Creative Commons license which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Open access is a property of individual works, not necessarily journals or publishers. Community standards, rather than copyright law, will continue to provide the mechanism for enforcement of proper attribution and responsible use of the published work, as they do now.