Research Article
BibTex RIS Cite

İNOVASYONDAN İMALATA GEÇİŞTE TÜRK SANAYİNDE ÖNEMLİ BİR BİLEŞEN OLAN KALIPÇILIK SEKTÖRÜNÜN ULUSLARARASI REKABETÇİLİK ANALİZİ

Year 2021, Volume: 8 Issue: 1, 8 - 16, 30.03.2021
https://doi.org/10.17261/Pressacademia.2021.1374

Abstract

Amaç - Söz konusu makalenin amacı, ileri zaman serisi analizi ve optimizasyon teknikleri yardımıyla kalıpçılık sektöründeki işletmelerin gelecek 10 yıllık dönemde rekabet gücünün nasıl geliştireceğine yönelik alternatif modellerin geliştirilmesi ve ilgili karar yapıcılarının hizmetine sunulabilir hale getirilmesidir.
Yöntem - Doğrusal olmayan ARDL (NARDL) modeli yardımıyla kalıp ihracatının bileşenleri asimetrik etkileri hesaba katacak biçimde ele alınmıştır. EURO/TRY döviz kuru modelde hesaba katılırken, Almanya, Fransa ve İtalya’nın GSYİH’ları da NARDL modelinde bulunmaktadır. Asimetrik etkilerin hesaba katılması hususunda ise kümülatif toplamlar yaklaşımı dikkate alınmıştır.
Bulgular - İtalya’nın GSYHİ’nın düşmesinin ülkede kalıpçılık sektörünü olumsuz etkileyeceği ve yerli üreticilere kauçuk ve plastik ürünlerin imalatı ve ihracatı kapsamında bir fırsat doğurabileceği öne sürülebilmektedir. Söz konusu bulgulara uygun olarak, kauçuk ve plastik ürünlerin imalatı ve ihracatı ile modelin diğer değişkenleri arasında genel anlamda herhangi bir asimetrik etki kısa ve uzun vade için geçerli değildir.
Sonuç - Kalıp üretimi ve ihracatı kapsamında talebin önemli belirsizlikler taşıyor olması, işletmelerin bu süreçte üretim fonksiyonundaki toplam faktör verimliliklerini artırmaya odaklanmaları gerektiğinin altını çizmektedir.

References

  • Alexandrov, I.A., Mikhailov, M.S. & Oleinik, A.V. (2020). Application of neural simulation methods for technological parameters identification of composite products injection molding process. Journal of Applied Engineering Science, 18(2), 165-172. DOI: 10.5937/jaes18-25912
  • Alp, S. (2005). Kalıpçılık Sektör Araştırması. İstanbul Ticaret Odası, İstanbul.
  • Butler, M.J. (1973). Mold costs and how to estimate accurately. Plastic Polymers, 41, 60-61.
  • Chen, Y.M. & Liu, J.J. (1999). Cost-effective design for injection molding. Robotics and Computer-Integrated Manufacturing, 15(1), 1-21. DOI: 10.1016/S0736-5845(99)00005-8
  • Chin, K.S. & Wong, T.N. (1995). An expert system for injection mold cost estimation. Advances in Polymer Technology, 14(4), 303-314. DOI: 10.1002/adv.1995.060140404
  • Chin, K.S. & Wong, T.N. (1996). Developing a knowledge-based injection mould cost estimation system by decision tables. The International Journal of Advanced Manufacturing Technology, 11, 353-365. DOI: 10.1007/BF01845694
  • Fagade, A.A. & Kazmer, D. (2000). Early cost estimation for injection molded components. Journal of Injection Molding Technology, 4(3), 97-106.
  • Hatemi-J, A. (2012). Asymmetric Causality Tests with an Application. Empirical Economics. 43(1): 447-456. DOI: 10.1007/s00181-011-0484-x
  • Kang, K.S., Kim, T.H. & Rhee, I.K. (1994). The establishment of standard time in die manufacturing process using standard data. Computers & Industrial Enginering, 26, 539-542. DOI: 10.1016/0360-8352(94)90353-0
  • Kuzman, K. & Nardin, B. (2004). Determination of manufacturing Technologies in mould manufacturing. Journal of Materials Processing Technology, 157-158, 573-577. DOI: 10.1016/j.jmatprotec.2004.07.116
  • Kwak, K., Kim, W. & Kim, K. (2018). Latecomer firms' combination of strategies in a specialized suppliers sector: A comparative case study of the Korean plastic injection molding machine industry. Technological Forecasting and Social Change, 133, 190-205. DOI: 10.1016/j.techfore.2018.04.004
  • Pilani, R., Narasimhan, K., Maiti, S.K., Singh, U.P. & Date, P.P. (2000). A hybrid intelligent systems approach for die design in sheet metal forming. The International Journal of Advanced Manufacturing Technology, 16, 370-375. DOI: 10.1007/s001700050168
  • Raviwongse, R. & Allada, V. (1997). Artificial neural network based model for computation of injection mould complexity. The International Journal of Advanced Manufacturing Technology, 13, 577-586. DOI: 10.1007/BF01176302
  • Schützer, K., Helleno, A.L. & Pereira, S.C. (2006). The influence of the manufacturing strategy on the production of molds and dies. Journal of Materials Processing Technology, 179(1-3), 172-177. DOI: 10.1016/j.jmatprotec.2006.03.098
  • Tiengtavaj, S., Phimonsathienand, T. & Fongsuwan, W. (2017). Ensuring competitive advantage through innovation capability and clustering in the thai automotive parts molding industry: a SEM approach. Management and Production Engineering Review, 8(1), 89-100. DOI: 10.1007/s00170-018-2762-7
  • Tosello, G., Charalambis, A., Kerbache, L., Mischkot, M., Pedersen, D.B., Calaon, M. & Hansen, H.N. (2019). Value chain and production cost optimization by integrating additive manufacturing in injection molding process chain. The International Journal of Advanced Manufacturing Technology, 100, 783-795. DOI: 10.1007/s00170-018-2762-7
  • Vogelsang, T.J. (1993). Unpublished computer program.
  • Wang, H., Ruan, X.Y. & Zhou, X.H. (2003). Research on Injection Mould Intelligent Cost Estimation System and Key Technologies. The International Journal of Advanced Manufacturing Technology, 21, 215-222. DOI: 10.1007/s001700300024
  • Yao, D., Kim, B., Choi, J. & Brown, R. (2008). Optimizing Injection Molding Toward Multiple Quality and Cost Issues. Polymer-Plastics Technology and Engineering, 38(5), 955-966. DOI: 10.1080/03602559909351624
  • Zheng, J., Wang, Q., Zaho, P. & Wu, C. (2009). Optimization of high-pressure die-casting process parameters using artificial neural network. The International Journal of Advanced Manufacturing Technology, 44, 667-674. DOI: 10.1007/s00170-008-1886-6

INTERNATIONAL COMPETITIVENESS ANALYSIS OF THE MOLDING INDUSTRY: AN IMPORTANT COMPONENT OF TURKISH INDUSTRY IN THE TRANSITION FROM INNOVATION TO MANUFACTURING

Year 2021, Volume: 8 Issue: 1, 8 - 16, 30.03.2021
https://doi.org/10.17261/Pressacademia.2021.1374

Abstract

Purpose – The purpose of this article is to develop alternative models for how to improve the competitiveness of enterprises in the molding sector within the next 10 years by using advanced time series analysis and optimization techniques and to make them available to the relevant policy makers.
Methodology – With the help of the non-linear ARDL (NARDL) model, the components of the mold export are analyzed to take into account the asymmetric effects. While the EURO/TRY exchange rate is considered in the model, the GDPs of Germany, France and Italy are also included in the NARDL model. The cumulative sums approach is taken into consideration in the context of the asymmetric effects.
Findings – It can be argued that the decrease in the GDP of Italy will adversely affect the molding industry in the country and may create an opportunity for domestic producers within the scope of the manufacture and export of rubber and plastic products. In accordance with the findings, any asymmetric effect in general terms between the manufacture and export of rubber and plastic products and other variables of the model is not present for the short- and long-run.
Conclusion – The fact that the demand has significant uncertainties within the scope of mold production and export underlines the need for enterprises to focus on increasing their total factor productivity in this process.

References

  • Alexandrov, I.A., Mikhailov, M.S. & Oleinik, A.V. (2020). Application of neural simulation methods for technological parameters identification of composite products injection molding process. Journal of Applied Engineering Science, 18(2), 165-172. DOI: 10.5937/jaes18-25912
  • Alp, S. (2005). Kalıpçılık Sektör Araştırması. İstanbul Ticaret Odası, İstanbul.
  • Butler, M.J. (1973). Mold costs and how to estimate accurately. Plastic Polymers, 41, 60-61.
  • Chen, Y.M. & Liu, J.J. (1999). Cost-effective design for injection molding. Robotics and Computer-Integrated Manufacturing, 15(1), 1-21. DOI: 10.1016/S0736-5845(99)00005-8
  • Chin, K.S. & Wong, T.N. (1995). An expert system for injection mold cost estimation. Advances in Polymer Technology, 14(4), 303-314. DOI: 10.1002/adv.1995.060140404
  • Chin, K.S. & Wong, T.N. (1996). Developing a knowledge-based injection mould cost estimation system by decision tables. The International Journal of Advanced Manufacturing Technology, 11, 353-365. DOI: 10.1007/BF01845694
  • Fagade, A.A. & Kazmer, D. (2000). Early cost estimation for injection molded components. Journal of Injection Molding Technology, 4(3), 97-106.
  • Hatemi-J, A. (2012). Asymmetric Causality Tests with an Application. Empirical Economics. 43(1): 447-456. DOI: 10.1007/s00181-011-0484-x
  • Kang, K.S., Kim, T.H. & Rhee, I.K. (1994). The establishment of standard time in die manufacturing process using standard data. Computers & Industrial Enginering, 26, 539-542. DOI: 10.1016/0360-8352(94)90353-0
  • Kuzman, K. & Nardin, B. (2004). Determination of manufacturing Technologies in mould manufacturing. Journal of Materials Processing Technology, 157-158, 573-577. DOI: 10.1016/j.jmatprotec.2004.07.116
  • Kwak, K., Kim, W. & Kim, K. (2018). Latecomer firms' combination of strategies in a specialized suppliers sector: A comparative case study of the Korean plastic injection molding machine industry. Technological Forecasting and Social Change, 133, 190-205. DOI: 10.1016/j.techfore.2018.04.004
  • Pilani, R., Narasimhan, K., Maiti, S.K., Singh, U.P. & Date, P.P. (2000). A hybrid intelligent systems approach for die design in sheet metal forming. The International Journal of Advanced Manufacturing Technology, 16, 370-375. DOI: 10.1007/s001700050168
  • Raviwongse, R. & Allada, V. (1997). Artificial neural network based model for computation of injection mould complexity. The International Journal of Advanced Manufacturing Technology, 13, 577-586. DOI: 10.1007/BF01176302
  • Schützer, K., Helleno, A.L. & Pereira, S.C. (2006). The influence of the manufacturing strategy on the production of molds and dies. Journal of Materials Processing Technology, 179(1-3), 172-177. DOI: 10.1016/j.jmatprotec.2006.03.098
  • Tiengtavaj, S., Phimonsathienand, T. & Fongsuwan, W. (2017). Ensuring competitive advantage through innovation capability and clustering in the thai automotive parts molding industry: a SEM approach. Management and Production Engineering Review, 8(1), 89-100. DOI: 10.1007/s00170-018-2762-7
  • Tosello, G., Charalambis, A., Kerbache, L., Mischkot, M., Pedersen, D.B., Calaon, M. & Hansen, H.N. (2019). Value chain and production cost optimization by integrating additive manufacturing in injection molding process chain. The International Journal of Advanced Manufacturing Technology, 100, 783-795. DOI: 10.1007/s00170-018-2762-7
  • Vogelsang, T.J. (1993). Unpublished computer program.
  • Wang, H., Ruan, X.Y. & Zhou, X.H. (2003). Research on Injection Mould Intelligent Cost Estimation System and Key Technologies. The International Journal of Advanced Manufacturing Technology, 21, 215-222. DOI: 10.1007/s001700300024
  • Yao, D., Kim, B., Choi, J. & Brown, R. (2008). Optimizing Injection Molding Toward Multiple Quality and Cost Issues. Polymer-Plastics Technology and Engineering, 38(5), 955-966. DOI: 10.1080/03602559909351624
  • Zheng, J., Wang, Q., Zaho, P. & Wu, C. (2009). Optimization of high-pressure die-casting process parameters using artificial neural network. The International Journal of Advanced Manufacturing Technology, 44, 667-674. DOI: 10.1007/s00170-008-1886-6
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Finance, Business Administration
Journal Section Articles
Authors

Kaya Tokmakcioglu This is me 0000-0002-5981-299X

Oguzhan Ozcelebi This is me 0000-0001-8746-9167

Publication Date March 30, 2021
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

APA Tokmakcioglu, K., & Ozcelebi, O. (2021). İNOVASYONDAN İMALATA GEÇİŞTE TÜRK SANAYİNDE ÖNEMLİ BİR BİLEŞEN OLAN KALIPÇILIK SEKTÖRÜNÜN ULUSLARARASI REKABETÇİLİK ANALİZİ. Journal of Economics Finance and Accounting, 8(1), 8-16. https://doi.org/10.17261/Pressacademia.2021.1374

Journal of Economics, Finance and Accounting (JEFA) is a scientific, academic, double blind peer-reviewed, quarterly and open-access online journal. The journal publishes four issues a year. The issuing months are March, June, September and December. The publication languages of the Journal are English and Turkish. JEFA aims to provide a research source for all practitioners, policy makers, professionals and researchers working in the area of economics, finance, accounting and auditing. The editor in chief of JEFA invites all manuscripts that cover theoretical and/or applied researches on topics related to the interest areas of the Journal. JEFA publishes academic research studies only. JEFA charges no submission or publication fee.

Ethics Policy - JEFA applies the standards of Committee on Publication Ethics (COPE). JEFA is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarized will not be accepted or if published will be removed from the publication. Authors must certify that their manuscripts are their original work. Plagiarism, duplicate, data fabrication and redundant publications are forbidden. The manuscripts are subject to plagiarism check by iThenticate or similar. All manuscript submissions must provide a similarity report (up to 15% excluding quotes, bibliography, abstract and method).

Open Access - All research articles published in PressAcademia Journals are fully open access; immediately freely available to read, download and share. Articles are published under the terms of a Creative Commons license which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Open access is a property of individual works, not necessarily journals or publishers. Community standards, rather than copyright law, will continue to provide the mechanism for enforcement of proper attribution and responsible use of the published work, as they do now.