Research Article
BibTex RIS Cite

Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması

Year 2022, , 157 - 166, 30.03.2022
https://doi.org/10.7240/jeps.1065273

Abstract

Bakır izabe curufu flotasyon atığına (CFA) daha önce literatürde ve endüstride hiç uygulanmamış pirit ilaveli asit kavurma işlemi sonrası liç ile baz metallerin ve liç atığı manyetik ayırma ile manyetik ürünlerin kazanımı çalışılmıştır. Çalışmadaki CFA, Türkiye’nin kuzeyinde bulunan sülfürlü bakır madeninin izabesi sırasında açığa çıkan curufun %87 bakır geri kazanılan flotasyonu sonucu kalan fayalit (FeO·SiO2) faz ve bu faza nüfuz etmiş (%0,34) Cu, (%4,16) Zn ve (%0,15) Co baz metallerini içeren çözünmeyen/refrakter camsı/amorf yapıdır. Piritli ve piritsiz asit kavurma işlemlerinin optimizasyonu için sıcaklıklar değiştirilirken (350⁰C -650 °C), asit miktarı 10ml H2SO4 olarak ve kavurma süresi 1s olarak sabit tutulmuştur. Asitsiz yapılan pirit kavurmada fayalit fazının bozunmadığı, 450⁰C’de yapılan kavurma ile 500⁰C, 550⁰C ve 650⁰C sıcaklıklarda elde edilen kalsinlerin X ışını kırınımı desenlerinin benzer olduğu tespit edien CFA için 350⁰C, 400⁰C, 450⁰C sıcaklıklarda 10 ml H2SO4 ve 1:4 pirit/CFA oranında pirit ilavesi yapılarak FeS2 ilaveli asit kavurma işlemi uygulanmıştır. Optimum piritli asit kavurma sıcaklığının tespit edilmesi için liç edilen kalsinlerin liç atıklarının X ışını kırınımı desenleri incelenmiş ve ana fazların manyetit, vustit, hematit ve fayalit olduğu görülmüştür. Liç atıklarının da değerlendirilebilmesi için gerekli olan manyetik ürünlerden vustit ve manyetit fazlarının en fazla görüldüğü koşulun 400⁰C’de yapılan piritli asit kavurmada açığa çıktığı tespit edilmiştir. Manyetik ayrımı gerçekleştirilen liç atığı ile elde edilen manyetik ürünün analizi sonucunda ana fazların manyetit olduğu görülmüştür.

References

  • [1]. Behrens, A., Giljum, S., Kovanda, J., & Niza, S. (2007). The material basis of the global economy. Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies.
  • [2]. Yin, Z., Sun, W., Hu, Y., Zhang, C., Guan, Q., & Wu, K. (2018). Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. Journal of Cleaner Production, 171, 1039–1048. https://doi.org/10.1016/j.jclepro.2017.10.020.
  • [3]. Gorai, B., Jana, R. K., & Premchand. (2003). Characteristics and utilisation of copper slag - A review. Resources, Conservation and Recycling, 39(4), 299–313. https://doi.org/10.1016/S0921-3449(02)00171-4
  • [4]. Phiri, T. C., Singh, P., & Nikoloski, A. N. (2021). The potential for copper slag waste as a resource for a circular economy: A review – Part II. Minerals Engineering, 172(July), 107150. https://doi.org/10.1016/j.mineng.2021.107150
  • [5]. Tian, H., Guo, Z., Pan, J., Zhu, D., Yang, C., Xue, Y., Li, S., & Wang, D. (2021). Comprehensive review on metallurgical recycling and cleaning of copper slag. Resources, Conservation and Recycling, 168(September 2020), 105366. https://doi.org/10.1016/j.resconrec.2020.105366.
  • [6]. Alp, I., Deveci, H., & Süngün, H. (2008). Utilization of flotation wastes of copper slag as raw material in cement production. Journal of Hazardous Materials, 159(2–3), 390–395.
  • [7]. Shen, H., & Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Management, 23(10), 933–949. https://doi.org/10.1016/S0956-053X(02)00164-2.
  • [8]. Kart, E. U., Yazgan, Z. H., & Gumuşsoy, A. (2021). Investigation of iron selectivity behavior of copper smelter slag flotation tailing with hematitization baking and base metals leaching methods. Physicochemical Problems of Mineral Processing, 57(5), 164–175. https://doi.org/10.37190/PPMP/141947
  • [9]. Kart, E. U. (2021). Evaluation Of Sulphation Baking And Autogenous Leaching Behaviour Of Turkish Metallurgical Slag Flotation Tailings. Physicochemical Problems of Mineral Processing, 57(4), 107–116. https://doi.org/10.37190/PPMP/138839
  • [10]. Z. Yang, M. Rui-Lin, N. Wang-Dong, and W. Hui, “Selective leaching of base metals from copper smelter slag,” Hydrometallurgy, vol. 103, no. 1–4, pp. 25–29, 2010, doi: 10.1016/j.hydromet.2010.02.009.
  • [11]. Nadirov, R. K., Syzdykova, L. I., Zhussupova, A. K., & Usserbaev, M. T. (2013). Recovery of value metals from copper smelter slag by ammonium chloride treatment. International Journal of Mineral Processing, 124, 145–149. https://doi.org/10.1016/j.minpro.2013.07.009
  • [12]. Hamamci, C., & Ziyadanğullari, B. (1991). Effect of Roasting with Ammonium Sulfate and Sulfuric Acid on the Extraction of Copper and Cobalt from Copper Converter Slag. Separation Science and Technology, 26(8), 1147–1154. https://doi.org/10.1080/01496399108050520
  • [13]. Sukla, L. B., Panda, S. C., & Jena, P. K. (1986). Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy, 16(2), 153–165. https://doi.org/10.1016/0304-386X(86)90040-X
  • [14]. Altundoğan, H. S., & Tümen, F. (1997). Metal recovery from copper converter slag by roasting with ferric sulphate. Hydrometallurgy, 44(96).
  • [15]. Tümen, F., Baıley, N. T. (1990). Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy, 25, 317–328. https://doi.org/https://doi.org/10.1016/0304-386X(90)90047-6
  • [16]. Arslan, C., & Arslan, F. (2002). Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy, 67(1–3), 1–7. https://doi.org/10.1016/S0304-386X(02)00139-1
  • [17]. Dimitrijevic, M. D., Urosevic, D. M., Jankovic, Z. D., & Milic, S. M. (2016). Recovery of copper from smelting slag by sulphation roasting and water leaching. Physicochemical Problems of Mineral Processing, 52(1), 409–421. https://doi.org/10.5277/ppmp160134
  • [18]. Zhang, Y., Li, Q., Liu, X., Xu, B., Yang, Y., & Jiang, T. (2019). A thermodynamic analysis on the roasting of pyrite. Minerals, 9(4). https://doi.org/10.3390/min9040220
  • [19]. Silva, R. G., Silva, J. M., Souza, T. C., Bianchetti, M., Guimarães, L., Reis, L., & Oliveira, E. (2021). Enhanced process route to produce magnetite pellet feed from copper tailing. Minerals Engineering, 173(August). https://doi.org/10.1016/j.mineng.2021.107195
  • [20]. Wang, L., Pan, Y. X., Li, J. H., & Qin, H. F. (2008). Magnetic properties related to thermal treatment of pyrite. Science in China, Series D: Earth Sciences, 51(8), 1144–1153. https://doi.org/10.1007/s11430-008-0083-7
  • [21]. Waters, K. E., Rowson, N. A., Greenwood, R. W., & Williams, A. J. (2008). The effect of heat treatment on the magnetic properties of pyrite. Minerals Engineering, 21(9), 679–682.
  • [22]. Kim, B., Park, C., Cho, K., Kim, J., Choi, N., & Lee, S. (2021). Sulfuric acid baking—water leaching for gold enrichment and arsenic removal from gold concentrate. Minerals, 11(12). https://doi.org/10.3390/min11121332
  • [23]. Schorr, J. R., & Everhart, J. O. (1969). Thermal Behavior of Pyrite and Its Relation to Carbon and Sulfur Oxidation in Clays. Journal of the American Ceramic Society, 52(7), 351–354.
  • [24]. Li, S., Pan, J., Zhu, D., Guo, Z., Xu, J., & Chou, J. (2019). A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na 2 CO 3 and CaO. Powder Technology, 347, 159–169. https://doi.org/10.1016/j.powtec.2019.02.046
  • [25]. Zhang, P., Cohen, R. E., & Haule, K. (2017). Magnetic phase diagram of FeO at high pressure. Journal of Physics: Conference Series, 827(1). https://doi.org/10.1088/1742-6596/827/1/012006

Investigation of Base Metals and Magnetic Product Extraction from Copper Smelter Slag Flotation Tailing by FeS2 Added Acid Baking, Leaching and Magnetic Separation

Year 2022, , 157 - 166, 30.03.2022
https://doi.org/10.7240/jeps.1065273

Abstract

Copper smelter slag flotation tailing’s (SFT) that has not been evaluated yet pyrite additive acid baking phase transformation and water leaching of base metals behaviour and magnetite product by magnetic seperation were investigated. The SFT in the study consists of the residual fayalite (FeO·SiO2) phase from the flotation, with a copper recovery of 87%, of the slag released during the smelting of the copper sulphide mine in northern Turkey, and the non-soluble glassy/amorphous structure containing the 0.34%Cu, 4.16%Zn and 0.15%Co base metals locked and doped to this phase. While the temperatures were changed (350⁰C -650 °C) for the optimization of acid baking processes with and without pyrite, the amount of acid was kept constant as 10ml H2SO4 and the baking time as 1h. It was determined that the fayalite phase did not decompose in acid-free pyrite roasting, and the X-ray diffraction patterns of the calcines obtained at 500⁰C, 550⁰C and 650⁰C temperatures by roasting at 450⁰C were similar. For this reason, an acid baking process with the addition of FeS2 was applied by adding 10 ml H2SO4 and 1:4 pyrite/SFT ratio of pyrite at 350⁰C, 400⁰C, 450⁰C temperatures. In order to determine the optimum pyrite acid baking temperature, the X-ray diffraction patterns of the leachates of the calcines were examined and it was observed that the main phases were magnetite, wustite, hematite and fayalite. It has been determined that the magnetic products required for the beneficiation of leachates, wustite and magnetite phases, are most common in pyrite acid roasting at 400⁰C. As a result of the analysis of the magnetic product obtained with the leachates, which was magnetic seperation, it was seen that the main phases were magnetite.

References

  • [1]. Behrens, A., Giljum, S., Kovanda, J., & Niza, S. (2007). The material basis of the global economy. Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies.
  • [2]. Yin, Z., Sun, W., Hu, Y., Zhang, C., Guan, Q., & Wu, K. (2018). Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. Journal of Cleaner Production, 171, 1039–1048. https://doi.org/10.1016/j.jclepro.2017.10.020.
  • [3]. Gorai, B., Jana, R. K., & Premchand. (2003). Characteristics and utilisation of copper slag - A review. Resources, Conservation and Recycling, 39(4), 299–313. https://doi.org/10.1016/S0921-3449(02)00171-4
  • [4]. Phiri, T. C., Singh, P., & Nikoloski, A. N. (2021). The potential for copper slag waste as a resource for a circular economy: A review – Part II. Minerals Engineering, 172(July), 107150. https://doi.org/10.1016/j.mineng.2021.107150
  • [5]. Tian, H., Guo, Z., Pan, J., Zhu, D., Yang, C., Xue, Y., Li, S., & Wang, D. (2021). Comprehensive review on metallurgical recycling and cleaning of copper slag. Resources, Conservation and Recycling, 168(September 2020), 105366. https://doi.org/10.1016/j.resconrec.2020.105366.
  • [6]. Alp, I., Deveci, H., & Süngün, H. (2008). Utilization of flotation wastes of copper slag as raw material in cement production. Journal of Hazardous Materials, 159(2–3), 390–395.
  • [7]. Shen, H., & Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Management, 23(10), 933–949. https://doi.org/10.1016/S0956-053X(02)00164-2.
  • [8]. Kart, E. U., Yazgan, Z. H., & Gumuşsoy, A. (2021). Investigation of iron selectivity behavior of copper smelter slag flotation tailing with hematitization baking and base metals leaching methods. Physicochemical Problems of Mineral Processing, 57(5), 164–175. https://doi.org/10.37190/PPMP/141947
  • [9]. Kart, E. U. (2021). Evaluation Of Sulphation Baking And Autogenous Leaching Behaviour Of Turkish Metallurgical Slag Flotation Tailings. Physicochemical Problems of Mineral Processing, 57(4), 107–116. https://doi.org/10.37190/PPMP/138839
  • [10]. Z. Yang, M. Rui-Lin, N. Wang-Dong, and W. Hui, “Selective leaching of base metals from copper smelter slag,” Hydrometallurgy, vol. 103, no. 1–4, pp. 25–29, 2010, doi: 10.1016/j.hydromet.2010.02.009.
  • [11]. Nadirov, R. K., Syzdykova, L. I., Zhussupova, A. K., & Usserbaev, M. T. (2013). Recovery of value metals from copper smelter slag by ammonium chloride treatment. International Journal of Mineral Processing, 124, 145–149. https://doi.org/10.1016/j.minpro.2013.07.009
  • [12]. Hamamci, C., & Ziyadanğullari, B. (1991). Effect of Roasting with Ammonium Sulfate and Sulfuric Acid on the Extraction of Copper and Cobalt from Copper Converter Slag. Separation Science and Technology, 26(8), 1147–1154. https://doi.org/10.1080/01496399108050520
  • [13]. Sukla, L. B., Panda, S. C., & Jena, P. K. (1986). Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy, 16(2), 153–165. https://doi.org/10.1016/0304-386X(86)90040-X
  • [14]. Altundoğan, H. S., & Tümen, F. (1997). Metal recovery from copper converter slag by roasting with ferric sulphate. Hydrometallurgy, 44(96).
  • [15]. Tümen, F., Baıley, N. T. (1990). Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy, 25, 317–328. https://doi.org/https://doi.org/10.1016/0304-386X(90)90047-6
  • [16]. Arslan, C., & Arslan, F. (2002). Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy, 67(1–3), 1–7. https://doi.org/10.1016/S0304-386X(02)00139-1
  • [17]. Dimitrijevic, M. D., Urosevic, D. M., Jankovic, Z. D., & Milic, S. M. (2016). Recovery of copper from smelting slag by sulphation roasting and water leaching. Physicochemical Problems of Mineral Processing, 52(1), 409–421. https://doi.org/10.5277/ppmp160134
  • [18]. Zhang, Y., Li, Q., Liu, X., Xu, B., Yang, Y., & Jiang, T. (2019). A thermodynamic analysis on the roasting of pyrite. Minerals, 9(4). https://doi.org/10.3390/min9040220
  • [19]. Silva, R. G., Silva, J. M., Souza, T. C., Bianchetti, M., Guimarães, L., Reis, L., & Oliveira, E. (2021). Enhanced process route to produce magnetite pellet feed from copper tailing. Minerals Engineering, 173(August). https://doi.org/10.1016/j.mineng.2021.107195
  • [20]. Wang, L., Pan, Y. X., Li, J. H., & Qin, H. F. (2008). Magnetic properties related to thermal treatment of pyrite. Science in China, Series D: Earth Sciences, 51(8), 1144–1153. https://doi.org/10.1007/s11430-008-0083-7
  • [21]. Waters, K. E., Rowson, N. A., Greenwood, R. W., & Williams, A. J. (2008). The effect of heat treatment on the magnetic properties of pyrite. Minerals Engineering, 21(9), 679–682.
  • [22]. Kim, B., Park, C., Cho, K., Kim, J., Choi, N., & Lee, S. (2021). Sulfuric acid baking—water leaching for gold enrichment and arsenic removal from gold concentrate. Minerals, 11(12). https://doi.org/10.3390/min11121332
  • [23]. Schorr, J. R., & Everhart, J. O. (1969). Thermal Behavior of Pyrite and Its Relation to Carbon and Sulfur Oxidation in Clays. Journal of the American Ceramic Society, 52(7), 351–354.
  • [24]. Li, S., Pan, J., Zhu, D., Guo, Z., Xu, J., & Chou, J. (2019). A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na 2 CO 3 and CaO. Powder Technology, 347, 159–169. https://doi.org/10.1016/j.powtec.2019.02.046
  • [25]. Zhang, P., Cohen, R. E., & Haule, K. (2017). Magnetic phase diagram of FeO at high pressure. Journal of Physics: Conference Series, 827(1). https://doi.org/10.1088/1742-6596/827/1/012006
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Elif Uzun Kart 0000-0002-4950-2162

Publication Date March 30, 2022
Published in Issue Year 2022

Cite

APA Uzun Kart, E. (2022). Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences, 34(1), 157-166. https://doi.org/10.7240/jeps.1065273
AMA Uzun Kart E. Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması. JEPS. March 2022;34(1):157-166. doi:10.7240/jeps.1065273
Chicago Uzun Kart, Elif. “Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç Ve Manyetik Ayırma Ile Baz Metal Ve Manyetik Ürün Eldesinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 34, no. 1 (March 2022): 157-66. https://doi.org/10.7240/jeps.1065273.
EndNote Uzun Kart E (March 1, 2022) Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences 34 1 157–166.
IEEE E. Uzun Kart, “Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması”, JEPS, vol. 34, no. 1, pp. 157–166, 2022, doi: 10.7240/jeps.1065273.
ISNAD Uzun Kart, Elif. “Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç Ve Manyetik Ayırma Ile Baz Metal Ve Manyetik Ürün Eldesinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 34/1 (March 2022), 157-166. https://doi.org/10.7240/jeps.1065273.
JAMA Uzun Kart E. Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması. JEPS. 2022;34:157–166.
MLA Uzun Kart, Elif. “Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç Ve Manyetik Ayırma Ile Baz Metal Ve Manyetik Ürün Eldesinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 1, 2022, pp. 157-66, doi:10.7240/jeps.1065273.
Vancouver Uzun Kart E. Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması. JEPS. 2022;34(1):157-66.