Research Article
BibTex RIS Cite

Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium.

Year 2023, , 177 - 182, 03.07.2023
https://doi.org/10.7240/jeps.1174562

Abstract

Graphene has been used in various applications in many fields. In recent years, its annual output has reached one hundred tons. Graphene has shown great potential in analytics, medicine, electronics, energy, agriculture, and environmental remediation. With increasing applications and production, the environmental risks and hazards of graphene have increased public concern. It was a key issue in environmental risk assessments of graphene materials. Microbial degradation of graphene and graphene oxide and its degradation by fungi in the environment have been previously studied. However, reduced graphene oxide (rGO) was difficult to degrade by fungi, and there were limited studies on this subject. In this study, the white rot fungus Phanerochaete chrysosporium was incubated with the culture system rGO for one week. The independent variables of microorganism concentration, pH, and rGO concentration were analyzed with the Box Behnken statistical method using response surface methodology. The potential environmental risks of graphene-based materials were assessed by examining the effect of rGO on the microbial activity of P. chrysosporium. The results revealed that rGO inhibited microbial activity during incubation and acted as an inhibitor in the medium. In addition, pH was found to be effective in inhibiting the environment, while microbial activity decreased at low pH. Moreover, P.chrysosporium was thought to degrade the oxygen groups on the rGO surface due to its decomposition ability. To test the environmental impact of graphene-based materials in general, it was aimed at unraveling the structure-activity relationships of the fungus P. chrysosporium.

References

  • Referans1 Akhavan, O., Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736, (2010).
  • Referans2 Arvidsson, R., Molander, S., Sandén, B.A., Review of Potential Environmental and Health Risks of the Nanomaterial Graphene. Hum. Ecol. Risk Assess. 19, 873–887, (2013).
  • Referans3 Begum, P., Ikhtiari, R., Fugetsu, B., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon N. Y. 49, 3907–3919, (2011).
  • Referans4 Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A.L., Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758, (2011).
  • Referans5 Dodbiba, G., Ponou, J., Fujita, T., Biosorption of heavy metals. Microbiol. Miner. Met. Mater. Environ. 409–426, (2015).
  • Referans6 Edokpayi, J.N., Enitan-Folami, A.M., Adeeyo, A.O., Durowoju, O.S., Jegede, A.O., Odiyo, J.O., Recent trends and national policies for water provision and wastewater treatment in South Africa. Water Conserv. Wastewater Treat. BRICS Nations 187–211, (2020).
  • Referans7 Efremova, L. V., Vasilchenko, A.S., Rakov, E.G., Deryabin, D.G., Toxicity of graphene shells, graphene oxide, and graphene oxide paper evaluated with escherichia coli biotests. Biomed Res. Int. (2015).
  • Referans8 Fu, F., Wang, Q., Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407–418, (2011).
  • Referans9 Gao, D., Du, L., Yang, J., Wu, W.M., Liang, H., A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 30, 70–77, (2010).
  • Referans10 GracePavithra, K., Jaikumar, V., Kumar, P.S., SundarRajan, P.S., A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 228, 580–593, (2019).
  • Referans11 Hu, C., Wang, Q., Zhao, H., Wang, L., Guo, S., Li, X., Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere 128, 184–190, (2015).
  • Referans12 Körbahti, B.K., Tanyolaç, A., Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology. J. Hazard. Mater. 151, 422–431, (2008).
  • Referans13 Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5, 6971–6980, (2011).
  • Referans14 Ma, Q., Zhang, Q., Yang, S., Yilihamu, A., Shi, M., Ouyang, B., Guan, X., Yang, S.T., Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surfaces B Biointerfaces 187, 110658, (2020).
  • Referans15 Madenli, Ö., Deveci, E.U., Gönen, Ç., Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilim. Derg. 33, 151–159, (2021).
  • Referans16 Ming, Z., Feng, S., Yilihamu, A., Yang, S., Ma, Q., Yang, H., Bai, Y., Yang, S.T., Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicol. Environ. Saf. 162, 225–234, (2018).
  • Referans17 Nogueira, P.F.M., Nakabayashi, D., Zucolotto, V., The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat. Toxicol. 166, 29–35, (2015)
  • Referans18 Selvaraj, M., Hai, A., Banat, F., Haija, M.A., Application and prospects of carbon nanostructured materials in water treatment: A review. J. Water Process Eng. 33, (2020).
  • Referans19 Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565, (2007).
  • Referans20 Xie, J., Ming, Z., Li, H., Yang, H., Yu, B., Wu, R., Liu, X., Bai, Y., Yang, S.T., Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere 151, 324–331, (2016).
  • Referans21 Yang, H., Feng, S., Ma, Q., Ming, Z., Bai, Y., Chen, L., Yang, S.T., Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium. RSC Adv. 8, 5026–5033, (2018).
  • Referans22 Yang, H., Wu, X., Ma, Q., Yilihamu, A., Yang, S., Zhang, Q., Feng, S., Yang, S.T., Fungal transformation of graphene by white rot fungus Phanerochaete chrysosporium. Chemosphere 216, 9–18, (2019)
  • Referans23 Zhao, J., Wang, Z., White, J.C., Xing, B., Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48, 9995–10009, (2014).

rGO'nun P. Chrysosporium'un Mikrobiyal Aktivitesi Üzerindeki Etkisinin İncelenmesiyle Grafen Bazlı Malzemelerin Potansiyel Çevresel Risklerinin Değerlendirilmesi.

Year 2023, , 177 - 182, 03.07.2023
https://doi.org/10.7240/jeps.1174562

Abstract

Grafen birçok alanda çeşitli uygulamalarda kullanılmıştır. Son yıllarda yıllık üretimi yüz tona ulaşıyor. Grafen, analitik, tıp, elektronik, enerji, tarım ve çevresel iyileştirme alanlarında büyük potansiyel göstermektedir. Artan uygulamalar ve üretimle birlikte, grafenin çevresel riskleri ve tehlikeleri toplumda endişeleri arttırmaktadır. Grafen malzemelerinin çevresel risk değerlendirmelerinde temel bir konudur. Grafen ve grafen oksidin mikrobiyal bozunması ve bunun çevresel ortamda mantarlar tarafından bozunması daha önce incelenmiştir. Ancak indirgenmiş grafen oksidin (rGO) mantarlar tarafından parçalanması zordur ve bu konuda sınırlı sayıda çalışma mevcuttur. Bu çalışmada beyaz çürüklük mantarı Phanerochaete chrysosporium kültür sistemi rGO ile bir hafta süreyle inkübe edildi. Mikroorganizma konsantrasyonu, pH ve rGO konsantrasyonu bağımsız değişkenleri yanıt yüzey metodolojisi kullanılarak Box Behnken istatistik yöntemiyle incelenmiştir. Grafen bazlı malzemelerin potansiyel çevresel riskleri, rGO'nun P. chrysosporium'un mikrobiyal aktivitesi üzerindeki etkisi incelenerek değerlendirildi. Sonuçlar rGO'nun inkübasyon sırasında mikrobiyal aktiviteyi inhibe ettiği ve besiyerinde inhibitör görevi gördüğünü ortaya çıkarmıştır. Ayrıca pH'ın ortamın inhibisyonunda etkili olduğu görülürken, düşük pH'da mikrobiyal aktivite azalmaktadır. Ek olarak P. Chrysosporium'un bozunma kabiliyetinden dolayı rGO yüzeyindeki oksijen gruplarını bozmuştur. Genel olarak grafen bazlı malzemelerin çevresel etkisini test etmek için, P. Chrysosporium mantarının yapı-aktivite ilişkilerini çözmesi amaçlanmıştır.

References

  • Referans1 Akhavan, O., Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736, (2010).
  • Referans2 Arvidsson, R., Molander, S., Sandén, B.A., Review of Potential Environmental and Health Risks of the Nanomaterial Graphene. Hum. Ecol. Risk Assess. 19, 873–887, (2013).
  • Referans3 Begum, P., Ikhtiari, R., Fugetsu, B., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon N. Y. 49, 3907–3919, (2011).
  • Referans4 Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A.L., Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758, (2011).
  • Referans5 Dodbiba, G., Ponou, J., Fujita, T., Biosorption of heavy metals. Microbiol. Miner. Met. Mater. Environ. 409–426, (2015).
  • Referans6 Edokpayi, J.N., Enitan-Folami, A.M., Adeeyo, A.O., Durowoju, O.S., Jegede, A.O., Odiyo, J.O., Recent trends and national policies for water provision and wastewater treatment in South Africa. Water Conserv. Wastewater Treat. BRICS Nations 187–211, (2020).
  • Referans7 Efremova, L. V., Vasilchenko, A.S., Rakov, E.G., Deryabin, D.G., Toxicity of graphene shells, graphene oxide, and graphene oxide paper evaluated with escherichia coli biotests. Biomed Res. Int. (2015).
  • Referans8 Fu, F., Wang, Q., Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407–418, (2011).
  • Referans9 Gao, D., Du, L., Yang, J., Wu, W.M., Liang, H., A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 30, 70–77, (2010).
  • Referans10 GracePavithra, K., Jaikumar, V., Kumar, P.S., SundarRajan, P.S., A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 228, 580–593, (2019).
  • Referans11 Hu, C., Wang, Q., Zhao, H., Wang, L., Guo, S., Li, X., Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere 128, 184–190, (2015).
  • Referans12 Körbahti, B.K., Tanyolaç, A., Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology. J. Hazard. Mater. 151, 422–431, (2008).
  • Referans13 Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5, 6971–6980, (2011).
  • Referans14 Ma, Q., Zhang, Q., Yang, S., Yilihamu, A., Shi, M., Ouyang, B., Guan, X., Yang, S.T., Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surfaces B Biointerfaces 187, 110658, (2020).
  • Referans15 Madenli, Ö., Deveci, E.U., Gönen, Ç., Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilim. Derg. 33, 151–159, (2021).
  • Referans16 Ming, Z., Feng, S., Yilihamu, A., Yang, S., Ma, Q., Yang, H., Bai, Y., Yang, S.T., Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicol. Environ. Saf. 162, 225–234, (2018).
  • Referans17 Nogueira, P.F.M., Nakabayashi, D., Zucolotto, V., The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat. Toxicol. 166, 29–35, (2015)
  • Referans18 Selvaraj, M., Hai, A., Banat, F., Haija, M.A., Application and prospects of carbon nanostructured materials in water treatment: A review. J. Water Process Eng. 33, (2020).
  • Referans19 Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565, (2007).
  • Referans20 Xie, J., Ming, Z., Li, H., Yang, H., Yu, B., Wu, R., Liu, X., Bai, Y., Yang, S.T., Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere 151, 324–331, (2016).
  • Referans21 Yang, H., Feng, S., Ma, Q., Ming, Z., Bai, Y., Chen, L., Yang, S.T., Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium. RSC Adv. 8, 5026–5033, (2018).
  • Referans22 Yang, H., Wu, X., Ma, Q., Yilihamu, A., Yang, S., Zhang, Q., Feng, S., Yang, S.T., Fungal transformation of graphene by white rot fungus Phanerochaete chrysosporium. Chemosphere 216, 9–18, (2019)
  • Referans23 Zhao, J., Wang, Z., White, J.C., Xing, B., Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48, 9995–10009, (2014).
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Özgecan Madenli 0000-0002-8673-3963

Ece Ümmü Deveci 0000-0002-7551-188X

Publication Date July 3, 2023
Published in Issue Year 2023

Cite

APA Madenli, Ö., & Deveci, E. Ü. (2023). Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium. International Journal of Advances in Engineering and Pure Sciences, 35(2), 177-182. https://doi.org/10.7240/jeps.1174562
AMA Madenli Ö, Deveci EÜ. Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium. JEPS. July 2023;35(2):177-182. doi:10.7240/jeps.1174562
Chicago Madenli, Özgecan, and Ece Ümmü Deveci. “ Chrysosporium”. International Journal of Advances in Engineering and Pure Sciences 35, no. 2 (July 2023): 177-82. https://doi.org/10.7240/jeps.1174562.
EndNote Madenli Ö, Deveci EÜ (July 1, 2023) Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium. International Journal of Advances in Engineering and Pure Sciences 35 2 177–182.
IEEE Ö. Madenli and E. Ü. Deveci, “ Chrysosporium”., JEPS, vol. 35, no. 2, pp. 177–182, 2023, doi: 10.7240/jeps.1174562.
ISNAD Madenli, Özgecan - Deveci, Ece Ümmü. “ Chrysosporium”. International Journal of Advances in Engineering and Pure Sciences 35/2 (July 2023), 177-182. https://doi.org/10.7240/jeps.1174562.
JAMA Madenli Ö, Deveci EÜ. Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium. JEPS. 2023;35:177–182.
MLA Madenli, Özgecan and Ece Ümmü Deveci. “ Chrysosporium”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 2, 2023, pp. 177-82, doi:10.7240/jeps.1174562.
Vancouver Madenli Ö, Deveci EÜ. Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium. JEPS. 2023;35(2):177-82.