Dövme ve Eklemeli İmalat Yöntemiyle Üretilmiş Inconel 625 Alaşımların Termal Yöntemle Hızlı Delinmesinde Elektrot Aşınmasının İncelenmesi
Year 2023,
, 89 - 99, 30.03.2023
Ferhat Ceritbinmez
,
Ali Günen
,
Uğur Gürol
,
Gürel Çam
Abstract
Üretildikleri 1950’li yıllardan beri havacılık, uzay, nükleer, biyomedikal endüstrisi gibi ileri mühendislik uygulamalarında sıklıkla tercih edilen Inconel grubu alaşımların daha maliyet etkenli bir yöntem olan eklemeli imalat yöntemiyle üretilebilirliği son 20 yılda yoğun olarak çalışılmaktadır. Ancak, süper alaşımlar işlenebilirliği zor malzemeler grubunda olup, iletkenlikleri zayıf olduğundan bu alaşımların delinmesinde kullanılan elektrotlarda ciddi hasarlar meydana gelmektedir. Dahası, eklemeli imalat yöntemiyle üretilen bu alaşımların delinebilirliğinde kullanılan elektrotlardaki aşınmayı inceleyen sınırlı sayıda çalışma vardır. Bu amaçla bu çalışmada, dövme ve eklemeli imalat tekniği ile üretilmiş Inconel 625 alaşımların, EDM ile hızlı delik delme yöntemi kullanılarak 3 mm çapında pirinç elektrotlarla delinmesi neticesinde aşınan elektrotlarda oluşan aşınma miktarları incelenmiştir. Elektrot aşınması; iş parçası üzerinden ölçülen delik çapları ve kerf açıları dikkate alınarak analitik olarak ve deneylerde aşınan elektrotların hassas terazilerle tartılması ile fiziksel olarak tespit edilmiştir. Daha tok ve kararlı bir yapıda olan dövme Inconel malzemeyi işleyen elektrodun eklemeli imalat Inconel alaşımı işleyen elektroda göre % 108,33 daha fazla aşındığı tespit edilmiştir. Buna ilaveten, dövme Inconel iş malzemesinde elektrot aşınmasından kaynaklı kerf açısının eklemeli imalat Inconel malzemeye göre % 80,06 daha fazla olduğu görülmüştür.
References
- KAYNAKLAR
[1] Tin, S., Hardy, M., Clews, J., Cormier, J., Feng, Q., Marcin, J., ... & Suzuki, A., Superalloys (2020).
- [2] Reed, R.C., The superalloys: fundamentals and applications. Cambridge University Press (2008).
- [3] Sjöberg, G., Casting superalloys for structural applications. In 7th international symposium on superalloy, vol. 718, pp. 117-130, (2010).
- [4] Yang, S.F., Yang, S. L., Qu, J. L., Du, J. H., Gu, Y., Zhao, P., & Wang, N., Inclusions in wrought superalloys: a review. Journal of Iron and Steel Research International, 28(8), 921-937, (2021).
- [5] Sreenu, B., Sarkar, R., Kumar, S.S., Chatterjee, S., & Rao, G.A., Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Materials Science and Engineering A, 797, 140254, (2020).
- [6] Wohlers, T., & Gornet, T., History of additive manufacturing. Wohlers report, 24(2014), 118, (2014).
- [7] Guler, S., Serindag, H.T., & Çam, G., Wire arc additive manufacturing (WAAM): Recent developments and prospects, Engineer and Machinery, 63(706), 82-116, (2022). https:// doi.org/10.46399/muhendismakina.1085716.
- [8] Cam, G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Mater Today Proc, 62(1), 149-198 (2022). https://doi.org/10.1016/j.matpr.2022.02.137.
- [9] Ozer, G., A review on additive manufacturing technologies, Niğde Ömer Halisdemir Üniversitesi, Mühendislik Bilimleri Dergisi, 9 (1), 606-621, (2020). https://hdl.handle.net/11352/ 3583.
- [10] Graybill, B., Li, M., Malawey, D., Ma, C., Alvarado-Orozco, J. M., & Martinez-Franco, E., Additive manufacturing of nickel-based superalloys. In International Manufacturing Science and Engineering Conference, Vol. 51357, s. V001T01A015. American Society of Mechanical Engineers (2018). https://doi.org/10.1115/MSEC2018-6666.
- [11] Çavdar, F., Günen, A., Kanca, E., Er, Y., Gök, M. S., Campos-Silva, I., & Olivares-Luna, M., An experimental and statistical analysis on dry sliding wear failure behavior of Incoloy 825 at elevated temperatures. Journal of Materials Engineering and Performance, 1-24, (2022). https://doi.org/10.1007/s11665-022-07381-4.
- [12] Cam, G., Fischer, A., Ratjen, R., dos Santos, J.F., Kocak, M., Properties of Laser Beam Welded Superalloys Inconel 625 and 718. in Proc. of 7th European Conference on Laser Treatment of Materials, ECLAT ’98, September 21-23, 1998, Hannover, Germany, ed. B.L. Mordike, pub. Werkstoff-Informationsgeselschaft mbH, Frankfurt, pp. 333-338, (1998).
- [13] Çam, G., Koçak, M., Progress in joining of advanced materials - Part II: Joining of metal matrix composites and joining of other advanced materials. Sci Technol Weld Join, 3 (4), 159-175, (1998). https://doi.org/10.1179/stw.1998.3.4.159.
- [14] Çam, G., Koçak, M., Progress in joining of advanced materials. Int Mater Rev, 43(1), 1-44, (1998). https://doi.org/10.1179/imr.1998.43.1.1.
- [15] Ceritbinmez F., Günen A., Gürol U., Çam G., A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing, Journal of Manufacturing Processes, 89, 150-169 (2023). https://doi.org/10.1016/j.jmapro.2023.01.072.
- [16] Günen A., Gürol U., Koçak M., Çam G., Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature, Progress in Additive Manufacturing, (2023). https://doi.org/10.1007/s40964-023-00398-8.
- [17] Wu, C. Li, X. Xia, H. Liang, Q. Qi, Y. Liu, Precipitate coarsening and its effects on the hot deformation behavior of the recently developed ’-strengthened superalloys, J. Mater. Sci. & Tech., 67, 95-104, (2021). https://doi.org/10.1016/ j.jmst.2020.06.025.
- [18] Hu, Y., Lin, X., Li, Y., Ou, Y., Gao, X., Zhang, Q., Li, W., Huang, W., (2021). Microstructural evolution and anisotropic mechanical properties of Inconel 625 superalloy fabricated by directed energy deposition, J. Alloy. Compd., 870, 159426, (2021).https://doi.org/10.1016/j.jallcom.2021.159426.
- [19] Luo, J., Yu, W., Xi, C., Zhang, C., Ma, C., Preparation of ultra fine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism, J. Alloy. Compd., 777, 157-164, (2019). https://doi.org/10.1016/ j.jallcom.2018.10.385.
- [20] Shahwaz, M., Nath, P., & Sen, I., A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys. Journal of Alloys and Compounds, 164530, (2022). https://doi.org/ 10.1016/ j.jallcom.2022.164530.
- [21] Soydan, O., Göv, K., Eyercioğlu, Ö., Surface finishing of aerospace materials. El-Cezeri, 7, 700-709, (2020). https://doi.org/10.31202/ecjse. 691548.
- [22] Karataş, M.A., & Gökkaya, H., A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326, (2018). https://doi.org/10.1016/j.dt.2018.02.001.
- [23] Parida, A.K., & Maity, K., Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Engineering Science and Technology, an International Journal, 21(3), 364-370, (2018).
- [24] Waghmode, S.P., & Dabade, U.A., Optimization of process parameters during turning of Inconel 625. Materials Today: Proceedings, 19, 823-826, (2019).
- [25] Datta, S., Biswal, B.B., & Mahapatra, S.S., Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: on evaluation of optimal parameters setting. Measurement, 137, 382-400, (2019). https://doi.org/10.1016/j.measurement.2019.01.065.
[26] Günen, A., Ceritbinmez, F., Patel, K., Akhtar, M. A., Mukherjee, S., Kanca, E., & Karakas, M.S., WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP Journal of Manufacturing Science and Technology, 38, 547-559, (2022). https://doi.org/10.1016/ j.cirpj.2022.05.021.
- [27] Mishra, D.K., Rahul, Datta, S., Masanta, M., & Mahapatra, S.S., Through hole making by electro-discharge machining on Inconel 625 super alloy using hollow copper tool electrode. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(2), 348-370, (2019). https://doi.org/10.1177/ 0954408918784701.
- [28] Ceritbinmez, F. & Kanca, E., The effects of cutting parameters on the kerf and surface roughness on the electrode in electro erosion process. Gazi University Journal of Science Part C: Design and Technology, 9(2) , 335-346, (2021). https://doi.org/10.29109/gujsc.913417.
- [29] Choudhary, S.K., Jadoun, R.S., & Singh, P., Optimization of EDM process parameters for TWR on machining of Inconel 600 superalloy using Taguchi approach. Materials Today: Proceedings, 57, 2281-2288, (2022). https://doi.org/10.1016/j.matpr.2022.01.059.
- [30] Sahoo, S.K., Thirupathi, N., & Saraswathamma, K., Experimental investigation and multi-objective optimization of die sink EDM process parameters on inconel-625 alloy by using utility function approach. Materials Today Proceedings, 24, 995-1005, (2020).
- [31] Singh, B., & Singh, M., Performance of different electrode materials in Electric Discharge Machining (EDM) Inconel 600. In Proceedings of 12th IRF International Conference, 29th June-2014, Pune, India, pp. 68-71, (2014).
[32] Urtekin, L., Bozkurt, F., Özerkan, H., Çoğun, C. & Uslan, İ., Ti6Al4V alaşımının elektro erozyon ile işlemesinde elektrolitik Cu ve CuBe takım elektrotlarının performansının karşılaştırılması. El-Cezeri, 8 (3), 1455-1461, (2021). https://doi.org/10.31202/ecjse.946472.
- [33] Opoz, T., Yasar, H., Murphy, M., Ekmekci, N. & Ekmekci, B., Ti6Al4V Surface modification by hydroxyapatite powder mixed electrical discharge machining for medical applications. International Journal of Advances in Engineering and Pure Sciences, Özel Sayı I, 1-10, (2019). https://doi.org/10.7240/jeps.450383.
- [34] Yuvaraj, N., Raja, R.A., Palanivel, P., & Kousik, N.V., EDM process by using copper electrode with Inconel 625 material. IOP Conference Series: Materials Science and Engineering, 811(1), 012011, (2020).
- [35] Akıncıoğlu, S., Taguchi metodu ve gri ilişkisel analizi kullanılarak 1,2316 paslanmaz çeliğin (R65) mikro-elektro erozyon delme kabiliyetinin değerlendirilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9 (2), 646-660, (2021). https://doi.org/10.29130/dubited.833720.
- [36] Ji, R., Liu, Y., Diao, R., Xu, C., Li, X., Cai, B., & Zhang, Y., Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics. PloS One, 9(11), e110775, (2014). https://doi.org/10.1371/journal.pone.0110775.
- [37] Ahmed, A., Tanjilul, M., Rahman, M., & Kumar, A.S., Ultrafast drilling of Inconel 718 using hybrid EDM with different electrode materials. Int. J. Adv. Manuf. Technol., 106(5), 2281-2294, (2020). https://doi.org/10.1007/s00170-019-04769-w.
Year 2023,
, 89 - 99, 30.03.2023
Ferhat Ceritbinmez
,
Ali Günen
,
Uğur Gürol
,
Gürel Çam
References
- KAYNAKLAR
[1] Tin, S., Hardy, M., Clews, J., Cormier, J., Feng, Q., Marcin, J., ... & Suzuki, A., Superalloys (2020).
- [2] Reed, R.C., The superalloys: fundamentals and applications. Cambridge University Press (2008).
- [3] Sjöberg, G., Casting superalloys for structural applications. In 7th international symposium on superalloy, vol. 718, pp. 117-130, (2010).
- [4] Yang, S.F., Yang, S. L., Qu, J. L., Du, J. H., Gu, Y., Zhao, P., & Wang, N., Inclusions in wrought superalloys: a review. Journal of Iron and Steel Research International, 28(8), 921-937, (2021).
- [5] Sreenu, B., Sarkar, R., Kumar, S.S., Chatterjee, S., & Rao, G.A., Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Materials Science and Engineering A, 797, 140254, (2020).
- [6] Wohlers, T., & Gornet, T., History of additive manufacturing. Wohlers report, 24(2014), 118, (2014).
- [7] Guler, S., Serindag, H.T., & Çam, G., Wire arc additive manufacturing (WAAM): Recent developments and prospects, Engineer and Machinery, 63(706), 82-116, (2022). https:// doi.org/10.46399/muhendismakina.1085716.
- [8] Cam, G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Mater Today Proc, 62(1), 149-198 (2022). https://doi.org/10.1016/j.matpr.2022.02.137.
- [9] Ozer, G., A review on additive manufacturing technologies, Niğde Ömer Halisdemir Üniversitesi, Mühendislik Bilimleri Dergisi, 9 (1), 606-621, (2020). https://hdl.handle.net/11352/ 3583.
- [10] Graybill, B., Li, M., Malawey, D., Ma, C., Alvarado-Orozco, J. M., & Martinez-Franco, E., Additive manufacturing of nickel-based superalloys. In International Manufacturing Science and Engineering Conference, Vol. 51357, s. V001T01A015. American Society of Mechanical Engineers (2018). https://doi.org/10.1115/MSEC2018-6666.
- [11] Çavdar, F., Günen, A., Kanca, E., Er, Y., Gök, M. S., Campos-Silva, I., & Olivares-Luna, M., An experimental and statistical analysis on dry sliding wear failure behavior of Incoloy 825 at elevated temperatures. Journal of Materials Engineering and Performance, 1-24, (2022). https://doi.org/10.1007/s11665-022-07381-4.
- [12] Cam, G., Fischer, A., Ratjen, R., dos Santos, J.F., Kocak, M., Properties of Laser Beam Welded Superalloys Inconel 625 and 718. in Proc. of 7th European Conference on Laser Treatment of Materials, ECLAT ’98, September 21-23, 1998, Hannover, Germany, ed. B.L. Mordike, pub. Werkstoff-Informationsgeselschaft mbH, Frankfurt, pp. 333-338, (1998).
- [13] Çam, G., Koçak, M., Progress in joining of advanced materials - Part II: Joining of metal matrix composites and joining of other advanced materials. Sci Technol Weld Join, 3 (4), 159-175, (1998). https://doi.org/10.1179/stw.1998.3.4.159.
- [14] Çam, G., Koçak, M., Progress in joining of advanced materials. Int Mater Rev, 43(1), 1-44, (1998). https://doi.org/10.1179/imr.1998.43.1.1.
- [15] Ceritbinmez F., Günen A., Gürol U., Çam G., A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing, Journal of Manufacturing Processes, 89, 150-169 (2023). https://doi.org/10.1016/j.jmapro.2023.01.072.
- [16] Günen A., Gürol U., Koçak M., Çam G., Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature, Progress in Additive Manufacturing, (2023). https://doi.org/10.1007/s40964-023-00398-8.
- [17] Wu, C. Li, X. Xia, H. Liang, Q. Qi, Y. Liu, Precipitate coarsening and its effects on the hot deformation behavior of the recently developed ’-strengthened superalloys, J. Mater. Sci. & Tech., 67, 95-104, (2021). https://doi.org/10.1016/ j.jmst.2020.06.025.
- [18] Hu, Y., Lin, X., Li, Y., Ou, Y., Gao, X., Zhang, Q., Li, W., Huang, W., (2021). Microstructural evolution and anisotropic mechanical properties of Inconel 625 superalloy fabricated by directed energy deposition, J. Alloy. Compd., 870, 159426, (2021).https://doi.org/10.1016/j.jallcom.2021.159426.
- [19] Luo, J., Yu, W., Xi, C., Zhang, C., Ma, C., Preparation of ultra fine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism, J. Alloy. Compd., 777, 157-164, (2019). https://doi.org/10.1016/ j.jallcom.2018.10.385.
- [20] Shahwaz, M., Nath, P., & Sen, I., A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys. Journal of Alloys and Compounds, 164530, (2022). https://doi.org/ 10.1016/ j.jallcom.2022.164530.
- [21] Soydan, O., Göv, K., Eyercioğlu, Ö., Surface finishing of aerospace materials. El-Cezeri, 7, 700-709, (2020). https://doi.org/10.31202/ecjse. 691548.
- [22] Karataş, M.A., & Gökkaya, H., A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326, (2018). https://doi.org/10.1016/j.dt.2018.02.001.
- [23] Parida, A.K., & Maity, K., Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Engineering Science and Technology, an International Journal, 21(3), 364-370, (2018).
- [24] Waghmode, S.P., & Dabade, U.A., Optimization of process parameters during turning of Inconel 625. Materials Today: Proceedings, 19, 823-826, (2019).
- [25] Datta, S., Biswal, B.B., & Mahapatra, S.S., Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: on evaluation of optimal parameters setting. Measurement, 137, 382-400, (2019). https://doi.org/10.1016/j.measurement.2019.01.065.
[26] Günen, A., Ceritbinmez, F., Patel, K., Akhtar, M. A., Mukherjee, S., Kanca, E., & Karakas, M.S., WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP Journal of Manufacturing Science and Technology, 38, 547-559, (2022). https://doi.org/10.1016/ j.cirpj.2022.05.021.
- [27] Mishra, D.K., Rahul, Datta, S., Masanta, M., & Mahapatra, S.S., Through hole making by electro-discharge machining on Inconel 625 super alloy using hollow copper tool electrode. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(2), 348-370, (2019). https://doi.org/10.1177/ 0954408918784701.
- [28] Ceritbinmez, F. & Kanca, E., The effects of cutting parameters on the kerf and surface roughness on the electrode in electro erosion process. Gazi University Journal of Science Part C: Design and Technology, 9(2) , 335-346, (2021). https://doi.org/10.29109/gujsc.913417.
- [29] Choudhary, S.K., Jadoun, R.S., & Singh, P., Optimization of EDM process parameters for TWR on machining of Inconel 600 superalloy using Taguchi approach. Materials Today: Proceedings, 57, 2281-2288, (2022). https://doi.org/10.1016/j.matpr.2022.01.059.
- [30] Sahoo, S.K., Thirupathi, N., & Saraswathamma, K., Experimental investigation and multi-objective optimization of die sink EDM process parameters on inconel-625 alloy by using utility function approach. Materials Today Proceedings, 24, 995-1005, (2020).
- [31] Singh, B., & Singh, M., Performance of different electrode materials in Electric Discharge Machining (EDM) Inconel 600. In Proceedings of 12th IRF International Conference, 29th June-2014, Pune, India, pp. 68-71, (2014).
[32] Urtekin, L., Bozkurt, F., Özerkan, H., Çoğun, C. & Uslan, İ., Ti6Al4V alaşımının elektro erozyon ile işlemesinde elektrolitik Cu ve CuBe takım elektrotlarının performansının karşılaştırılması. El-Cezeri, 8 (3), 1455-1461, (2021). https://doi.org/10.31202/ecjse.946472.
- [33] Opoz, T., Yasar, H., Murphy, M., Ekmekci, N. & Ekmekci, B., Ti6Al4V Surface modification by hydroxyapatite powder mixed electrical discharge machining for medical applications. International Journal of Advances in Engineering and Pure Sciences, Özel Sayı I, 1-10, (2019). https://doi.org/10.7240/jeps.450383.
- [34] Yuvaraj, N., Raja, R.A., Palanivel, P., & Kousik, N.V., EDM process by using copper electrode with Inconel 625 material. IOP Conference Series: Materials Science and Engineering, 811(1), 012011, (2020).
- [35] Akıncıoğlu, S., Taguchi metodu ve gri ilişkisel analizi kullanılarak 1,2316 paslanmaz çeliğin (R65) mikro-elektro erozyon delme kabiliyetinin değerlendirilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9 (2), 646-660, (2021). https://doi.org/10.29130/dubited.833720.
- [36] Ji, R., Liu, Y., Diao, R., Xu, C., Li, X., Cai, B., & Zhang, Y., Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics. PloS One, 9(11), e110775, (2014). https://doi.org/10.1371/journal.pone.0110775.
- [37] Ahmed, A., Tanjilul, M., Rahman, M., & Kumar, A.S., Ultrafast drilling of Inconel 718 using hybrid EDM with different electrode materials. Int. J. Adv. Manuf. Technol., 106(5), 2281-2294, (2020). https://doi.org/10.1007/s00170-019-04769-w.