Research Article
BibTex RIS Cite

Geri Dönüştürülmüş EPS ve Epoksi Kullanılarak Üretilen Kompozit Malzemeler: Sürdürülebilirlik ve Performansın Birleşimi

Year 2023, , 379 - 388, 30.09.2023
https://doi.org/10.7240/jeps.1285079

Abstract

Epoksi kompozitler, epoksi matris ve takviye edici malzemelerin bir araya getirilmesiyle oluşturulan yüksek mukavemetli ve hafif malzemelerdir. Bu tür kompozitler, havacılık, otomotiv, enerji ve birçok endüstriyel uygulamada geniş bir kullanım alanına sahiptir. Bu çalışmada, epoksi matrise farklı oranlarda (%1, %3, %7, %11 ve %14) eklenen yüzeyi PA ile kaplanmış genişletilmiş polistiren (rEPS) baloncukların malzeme özellikleri üzerindeki etkileri incelenmiştir. Yoğunluk, sertlik, yüzey parlaklığı ve Charpy darbe mukavemeti gibi malzeme özellikleri, farklı rEPS oranına göre ölçülmüştür. Sonuçlar, rEPS baloncuklarının yoğunluğu azaltarak malzemenin ağırlığını düşürdüğünü, yüzey parlaklığını etkilediğini ve darbe mukavemetini azalttığını göstermiştir. Sertlik değerlerinde belirgin bir farklılık bulunmamıştır. rEPS içeriği arttıkça darbe mukavemeti azalmıştır. rEPS baloncuklarının homojen dağılımının malzeme özellikleri üzerindeki etkileri incelenmiş ve uygun üretim süreçleri ile rEPS kullanımının optimize edilmesi gerektiği vurgulanmıştır. Bu çalışma, rEPS kullanımının epoksi kompozit malzemelerdeki performansını anlamak için önemli bir adım olmuş ve gelecekteki araştırmalar için bir temel sağlamıştır.

References

  • [1] Aciu, C., Manea, D. L., Molnar, L. M., & Jumate, E. (2015). Recycling of Polystyrene Waste in the Composition of Ecological Mortars. Procedia Technology, 19, 498-505. https://doi.org/10.1016/j.protcy.2015.02.071
  • [2] Sun, Y., Li, C., You, J., Bu, C., Yu, L., Yan, Z., Liu, X., Zhang, Y., & Chen, X. (2022). An Investigation of the properties of expanded polystyrene concrete with fibers based on an orthogonal experimental design. Materials, 15(3), 1228. https://doi.org/10.3390/ma15031228
  • [3] Godet, R., Hoytema, N. V., Russel J., Rivas S. R., & Bersuder P. (2022). Review of Expanded Polystyrene (EPS) and Extruded Polystyrene (XPS) as a raw material; general characteristics, implementations, and suppliers, Report WP5 Knowledge Hub Deliverable 5.1, Atlantic Area Programme.
  • [4] Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51,19-42. https://doi.org/10.1016/j.wasman.2016.03.005
  • [5] Chaukura, N., Gwenzi, W., Bunhu, T., Deborah, T., Ruziwa, T., & Pumure, I. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recyling, 107,157-165. https://doi.org/10.1016/j.resconrec.2015.10.031
  • [6] Catro, C. G., Carmona, L. O., & Florez, J. O. (2017). Production and characterization of the mechanical and thermal properties of expanded polystyrene with recycled material. Ing. Univ., 21(2),177-194.
  • [7] Serin, H., & Yıldızhan, Ş. (2021). Tensile properties and cost-property efficiency analyses of expanded polystyrene/chopped glass fiber/epoxy novel composite. Journal of Mechanical Science and Technology, 35,145-151. https://doi.org/10.1007/s12206-020-1213-1
  • [8] Smorygo, O., Gokhale, A. A., Vazhnova, A., & Stefan, A. (2019). Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Composites Communications, 15,64-67. https://doi.org/10.1016/j.coco.2019.06.008
  • [9] Aydoğmuş, E., Dağ, M., Yalçın, Z. G., & Arslanoğlu, H. (2022). Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite. Journal of Building Engineering, 47,103897. https://doi.org/10.1016/j.jobe.2021.103897
  • [10] Samsudin, S. S., Ariff, Z. M., Zakaria, Z., & Bakar, A. A. (2011). Development and characterization of epoxy syntactic foam filled with epoxy hollow spheres. Express Polymer Letters, 5(7),653-660. DOI: 10.3144/expresspolymlett.2011.63
  • [11] Reemas, S. A., & Maheswaran, R. (2017). Effect of EPS volüme fraction in buoyancy characteristics of expanded polystyrene/epoxy sandwich composites. Int. J. Materials Engineering Innpvation, 8(2), 146-157. https://doi.org/10.1504/IJMATEI.2017.088092
  • [12] Inoue, Y., Hasegawa, M., Hazumi, M., Takada, S., & Tomaru, T. (2023). Development of epoxy-based millimeter absorber with expanded polystyrenes and carbon black. Applied Optics, 62(5),1419-1427. https://doi.org/10.48550/arXiv.2210.16202
  • [13] Li, C., Liu, Y., & Chen, Z. (2023). Study of mechanical properties of micron polystyrene-toughened epoxy resin. Appl. Sci., 16(6),3981. https://doi.org/10.3390/app13063981
  • [14] Vaitkus, S., Laukaiitis, A., Gnipas, I., Kersulis, V., & Vejelis, S. (2006). Experimental analysis of structure and deformation mechanisms of expanded polystyrene (EPS) Slabs. Materials Science, 12(4), 323-327.
  • [15] Wang, P., Lei, H., Zhu, X., Chen, H., & Fang, D. (2018). Investigation on the mechanical properties of epoxy resin with void defects using digital image correlation and image-based finite element method. Polymer Testing, 72,223-231. https://doi.org/10.1016/j.polymertesting.2018.10.025
  • [16] Rosu, D., Rosu, L., Mustata, F., & Varganici, C. D. (2012). Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin. Polymer Degradation and Stability, 97(8),1261-1269. https://doi.org/10.1016/j.polymdegradstab.2012.05.035
  • [17] Ramakrishnan, T., Karthikeyan, K. R., Tamilsevan, V., Sivakumar, S., Durgaprased, G., Radha, H. R., Singh, A. N., & Waji, Y. A. (2022). Study of Various Epoxy-Based Surface Coating Techniques for Anticorrosion Properties. Advances in Materials Science and Engineering, Article ID 5285919. https://doi.org/10.1155/2022/5285919
  • [18] Kotnarowska, D. (2013). Destruction of Epoxy Coatings under the Influence of Climatic Factors. Solid State Phenomena, 199,581–586. https://doi.org/10.4028/www.scientific.net/ssp.199.581
  • [19] Kahraman, M. V., Bayramoğlu, G., Boztoprak, Y., Güngör, A., & Apohan, N. K. (2009). Synthesis of fluorinated/methacrylated epoxy based oligomers and investigation of its performance in the UV curable hybrid coatings. Progress in Organic Coatings, 66(1),52-58. https://doi.org/10.1016/j.porgcoat.2009.06.002
  • [20] Khan, M. A., Rahman, M. M., Gosh, M. K., & Chowdhury, T. A. (2003). Mechanical properties study of photocured paperboard surface treated with aliphatic epoxy diacrylate. Journal of Applied Polymer Science, 87,1774-1780. https://doi.org/10.1002/app.11562
  • [21] Yong, Q., Chang, J., Liu, Q., Jiang, F., Wei, D., & Li, H. (2020). Matt Polyurethane Coating: Correlation of Surface Roughness on Measurement Length and Gloss.Polymers, 12(2),326. https://doi.org/10.3390/polym12020326
  • [22] Ali, K. M. I., Khan, M. A., Rahman, M., & Ghani, M. (1998). Ultraviolet curing of epoxy coating on wood surface. Journal of Applied Polymer Science, 66,1997-2004. https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1997::AID-APP16>3.0.CO;2-S
  • [23] Noodeh, M. B., Moradian, S., Ranjbar, & Z. (2017). Improvement of the edge protection of an automotive electrocoating in presence of a prepared epoxy-amine microgel. Progress in Organic Coatings, 103,111-125. https://doi.org/10.1016/j.porgcoat.2016.10.026
  • [24] Ataei, S., Khorasani, S. N., Torkaman, R., Neisiany, R. E., & Koochaki, M. S. (2018). Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Progress in Organic Coatings, 120,160-166. https://doi.org/10.1016/j.porgcoat.2018.03.02
  • [25] Assanvo, E. F., Gogoi, P., Dolui, S. K., & Baruah, S. D. (2015). Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Industrial Crops and Products, 65, 293-302. https://doi.org/10.1016/j.indcrop.2014.11.049
  • [26] Wang, Z., Huang, Z., & Yang, T. (2020). Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength. Materials Chemistry and Physics, 240, 122190. https://doi.org/10.1016/j.matchemphys.2019.122190
  • [27] Wu, X., Gao, Y., Wang, Y., Jiang, T., Yu, J., Yang, K., Zhao, Y., & Li, W. (2020). Preparation and mechanical properties of carbon fiber reinforced multiphase Epoxy syntactic foam (CF-R-Epoxy/HGMS/CFR-HEMS foam). Acs Omega, 5(23),14133-14146. https://doi.org/10.1021/acsomega.0c01744
  • [28] Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299(1), 9-26. https://doi.org/10.1002/mame.201300008
  • [29] Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., &Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956
  • [30] Nawafleh, N., & Celik, E. (2020). Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Additive Manufacturing, 33, 101109. https://doi.org/10.1016/j.addma.2020.101109
  • [31] John, A., & Alex, S. (2014). A review on the composite materials used for automotive bumper in passenger vehicles. International Journal of Engineering and Management Research (IJEMR), 4(4), 98-101.
  • [32] McIlhagger, A., Archer, E., & McIlhagger, R. (2020). Manufacturing processes for composite materials and components for aerospace applications. In Polymer composites in the aerospace industry (pp. 59-81). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102679-3.00003-4
  • [33] Zhang, W., Camino, G., & Yang, R. (2017). Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 67, 77-125. https://doi.org/10.1016/j.progpolymsci.2016.09.011
  • [34] Thio, B. J.R. (2009). Characterization of bioparticulate adhesion to synthetic carpet polymers with atomic force microscopy. PhD Thesis, Georgia Institute of Technology, United States.
  • [35] Fleming, R. W. (2014). Visual perception of materials and their properties. Vision research, 94, 62-75. https://doi.org/10.1016/j.visres.2013.11.004
  • [36] Yapıcı, İ., & Yapıcı, A. (2012). E-camı/epoksi tabakalı kompozitlerde düşük hızlı darbe davranışının sonlu elemanlar yöntemiyle incelenmesi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 1(2),48-60. https://doi.org/10.28948/ngumuh.239393
  • [37] Chung, S. Y., Elrahman, M. A., & Stephan, D. (2018). Effects of expanded polystyrene (EPS) sizes and arrangements on the properties of lightweight concrete. Materials and Structure, 51,57. https://doi.org/10.1617/s11527-018-1182-3
  • [38] Hakim, A. A., El-Basheer, T. M., El-Aziz, A. M. A., & Afifi, M. (2021). Acoustic, ultrasonic, mechanical properties and biodegradability of sawdust/ recycled expanded polystyrene eco-friendly composites. Polymer Testing 99, 107215. https://doi.org/10.1016/j.polymertesting.2021.107215
  • [39] Kandemir, M., Karagöz, İ., & Sepetçioğlu, H. (2023). Experimental ınvestigation of effects of the nucleating agent on mechanical and crystallization behavior of ınjection-molded ısotactic polypropylene. El-cezeri, 10(1), 109-120. https://doi.org/10.31202/ecjse.1165527
  • [40] Cengiz, Ö., Karagöz, İ., & Demirer, H. (2021). Fındık kabuğu ve talk dolgulu polipropilen kompozitlerin mekanik ve ısıl özelliklerinin incelenmesi. 8. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 18-19 Haziran, Eskişehir, Türkiye.
  • [41] Adibelli, Ü., Mutlu, D., Çakir Yiğit, N., & Karagöz, İ. (2022). Ceviz kabuğu dolgulu epoksi hibrit kompozit malzemelerin hazırlanması ve karakterizasyonu. 10. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 13-14 Mayıs, İstanbul, Türkiye.

Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance

Year 2023, , 379 - 388, 30.09.2023
https://doi.org/10.7240/jeps.1285079

Abstract

Epoxy composites are high-strength and lightweight materials created by combining epoxy matrix with reinforcing materials. Such composites have a wide range of applications in aviation, automotive, energy, and many other industrial sectors. In this study, the effects of surface-coated expanded polystyrene (rEPS) bubbles added to epoxy matrix at different ratios (%1, %3, %7, %11, and %14) on material properties were investigated. Material properties such as density, hardness, surface gloss at a 60° angle, and Charpy impact strength were measured according to varying rEPS ratios. The results showed that rEPS bubbles reduced density, thereby reducing the weight of the material, affected surface gloss, and decreased impact strength. There was no significant difference in hardness values, but impact strength decreased with increasing rEPS content. The effects of homogeneous distribution of rEPS bubbles on material properties were examined, and it was emphasized that the use of rEPS should be optimized with appropriate production processes. This study has been an important step in understanding the performance of rEPS in epoxy composite materials and has provided a foundation for future research.

References

  • [1] Aciu, C., Manea, D. L., Molnar, L. M., & Jumate, E. (2015). Recycling of Polystyrene Waste in the Composition of Ecological Mortars. Procedia Technology, 19, 498-505. https://doi.org/10.1016/j.protcy.2015.02.071
  • [2] Sun, Y., Li, C., You, J., Bu, C., Yu, L., Yan, Z., Liu, X., Zhang, Y., & Chen, X. (2022). An Investigation of the properties of expanded polystyrene concrete with fibers based on an orthogonal experimental design. Materials, 15(3), 1228. https://doi.org/10.3390/ma15031228
  • [3] Godet, R., Hoytema, N. V., Russel J., Rivas S. R., & Bersuder P. (2022). Review of Expanded Polystyrene (EPS) and Extruded Polystyrene (XPS) as a raw material; general characteristics, implementations, and suppliers, Report WP5 Knowledge Hub Deliverable 5.1, Atlantic Area Programme.
  • [4] Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51,19-42. https://doi.org/10.1016/j.wasman.2016.03.005
  • [5] Chaukura, N., Gwenzi, W., Bunhu, T., Deborah, T., Ruziwa, T., & Pumure, I. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recyling, 107,157-165. https://doi.org/10.1016/j.resconrec.2015.10.031
  • [6] Catro, C. G., Carmona, L. O., & Florez, J. O. (2017). Production and characterization of the mechanical and thermal properties of expanded polystyrene with recycled material. Ing. Univ., 21(2),177-194.
  • [7] Serin, H., & Yıldızhan, Ş. (2021). Tensile properties and cost-property efficiency analyses of expanded polystyrene/chopped glass fiber/epoxy novel composite. Journal of Mechanical Science and Technology, 35,145-151. https://doi.org/10.1007/s12206-020-1213-1
  • [8] Smorygo, O., Gokhale, A. A., Vazhnova, A., & Stefan, A. (2019). Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Composites Communications, 15,64-67. https://doi.org/10.1016/j.coco.2019.06.008
  • [9] Aydoğmuş, E., Dağ, M., Yalçın, Z. G., & Arslanoğlu, H. (2022). Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite. Journal of Building Engineering, 47,103897. https://doi.org/10.1016/j.jobe.2021.103897
  • [10] Samsudin, S. S., Ariff, Z. M., Zakaria, Z., & Bakar, A. A. (2011). Development and characterization of epoxy syntactic foam filled with epoxy hollow spheres. Express Polymer Letters, 5(7),653-660. DOI: 10.3144/expresspolymlett.2011.63
  • [11] Reemas, S. A., & Maheswaran, R. (2017). Effect of EPS volüme fraction in buoyancy characteristics of expanded polystyrene/epoxy sandwich composites. Int. J. Materials Engineering Innpvation, 8(2), 146-157. https://doi.org/10.1504/IJMATEI.2017.088092
  • [12] Inoue, Y., Hasegawa, M., Hazumi, M., Takada, S., & Tomaru, T. (2023). Development of epoxy-based millimeter absorber with expanded polystyrenes and carbon black. Applied Optics, 62(5),1419-1427. https://doi.org/10.48550/arXiv.2210.16202
  • [13] Li, C., Liu, Y., & Chen, Z. (2023). Study of mechanical properties of micron polystyrene-toughened epoxy resin. Appl. Sci., 16(6),3981. https://doi.org/10.3390/app13063981
  • [14] Vaitkus, S., Laukaiitis, A., Gnipas, I., Kersulis, V., & Vejelis, S. (2006). Experimental analysis of structure and deformation mechanisms of expanded polystyrene (EPS) Slabs. Materials Science, 12(4), 323-327.
  • [15] Wang, P., Lei, H., Zhu, X., Chen, H., & Fang, D. (2018). Investigation on the mechanical properties of epoxy resin with void defects using digital image correlation and image-based finite element method. Polymer Testing, 72,223-231. https://doi.org/10.1016/j.polymertesting.2018.10.025
  • [16] Rosu, D., Rosu, L., Mustata, F., & Varganici, C. D. (2012). Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin. Polymer Degradation and Stability, 97(8),1261-1269. https://doi.org/10.1016/j.polymdegradstab.2012.05.035
  • [17] Ramakrishnan, T., Karthikeyan, K. R., Tamilsevan, V., Sivakumar, S., Durgaprased, G., Radha, H. R., Singh, A. N., & Waji, Y. A. (2022). Study of Various Epoxy-Based Surface Coating Techniques for Anticorrosion Properties. Advances in Materials Science and Engineering, Article ID 5285919. https://doi.org/10.1155/2022/5285919
  • [18] Kotnarowska, D. (2013). Destruction of Epoxy Coatings under the Influence of Climatic Factors. Solid State Phenomena, 199,581–586. https://doi.org/10.4028/www.scientific.net/ssp.199.581
  • [19] Kahraman, M. V., Bayramoğlu, G., Boztoprak, Y., Güngör, A., & Apohan, N. K. (2009). Synthesis of fluorinated/methacrylated epoxy based oligomers and investigation of its performance in the UV curable hybrid coatings. Progress in Organic Coatings, 66(1),52-58. https://doi.org/10.1016/j.porgcoat.2009.06.002
  • [20] Khan, M. A., Rahman, M. M., Gosh, M. K., & Chowdhury, T. A. (2003). Mechanical properties study of photocured paperboard surface treated with aliphatic epoxy diacrylate. Journal of Applied Polymer Science, 87,1774-1780. https://doi.org/10.1002/app.11562
  • [21] Yong, Q., Chang, J., Liu, Q., Jiang, F., Wei, D., & Li, H. (2020). Matt Polyurethane Coating: Correlation of Surface Roughness on Measurement Length and Gloss.Polymers, 12(2),326. https://doi.org/10.3390/polym12020326
  • [22] Ali, K. M. I., Khan, M. A., Rahman, M., & Ghani, M. (1998). Ultraviolet curing of epoxy coating on wood surface. Journal of Applied Polymer Science, 66,1997-2004. https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1997::AID-APP16>3.0.CO;2-S
  • [23] Noodeh, M. B., Moradian, S., Ranjbar, & Z. (2017). Improvement of the edge protection of an automotive electrocoating in presence of a prepared epoxy-amine microgel. Progress in Organic Coatings, 103,111-125. https://doi.org/10.1016/j.porgcoat.2016.10.026
  • [24] Ataei, S., Khorasani, S. N., Torkaman, R., Neisiany, R. E., & Koochaki, M. S. (2018). Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Progress in Organic Coatings, 120,160-166. https://doi.org/10.1016/j.porgcoat.2018.03.02
  • [25] Assanvo, E. F., Gogoi, P., Dolui, S. K., & Baruah, S. D. (2015). Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Industrial Crops and Products, 65, 293-302. https://doi.org/10.1016/j.indcrop.2014.11.049
  • [26] Wang, Z., Huang, Z., & Yang, T. (2020). Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength. Materials Chemistry and Physics, 240, 122190. https://doi.org/10.1016/j.matchemphys.2019.122190
  • [27] Wu, X., Gao, Y., Wang, Y., Jiang, T., Yu, J., Yang, K., Zhao, Y., & Li, W. (2020). Preparation and mechanical properties of carbon fiber reinforced multiphase Epoxy syntactic foam (CF-R-Epoxy/HGMS/CFR-HEMS foam). Acs Omega, 5(23),14133-14146. https://doi.org/10.1021/acsomega.0c01744
  • [28] Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299(1), 9-26. https://doi.org/10.1002/mame.201300008
  • [29] Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., &Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956
  • [30] Nawafleh, N., & Celik, E. (2020). Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Additive Manufacturing, 33, 101109. https://doi.org/10.1016/j.addma.2020.101109
  • [31] John, A., & Alex, S. (2014). A review on the composite materials used for automotive bumper in passenger vehicles. International Journal of Engineering and Management Research (IJEMR), 4(4), 98-101.
  • [32] McIlhagger, A., Archer, E., & McIlhagger, R. (2020). Manufacturing processes for composite materials and components for aerospace applications. In Polymer composites in the aerospace industry (pp. 59-81). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102679-3.00003-4
  • [33] Zhang, W., Camino, G., & Yang, R. (2017). Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 67, 77-125. https://doi.org/10.1016/j.progpolymsci.2016.09.011
  • [34] Thio, B. J.R. (2009). Characterization of bioparticulate adhesion to synthetic carpet polymers with atomic force microscopy. PhD Thesis, Georgia Institute of Technology, United States.
  • [35] Fleming, R. W. (2014). Visual perception of materials and their properties. Vision research, 94, 62-75. https://doi.org/10.1016/j.visres.2013.11.004
  • [36] Yapıcı, İ., & Yapıcı, A. (2012). E-camı/epoksi tabakalı kompozitlerde düşük hızlı darbe davranışının sonlu elemanlar yöntemiyle incelenmesi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 1(2),48-60. https://doi.org/10.28948/ngumuh.239393
  • [37] Chung, S. Y., Elrahman, M. A., & Stephan, D. (2018). Effects of expanded polystyrene (EPS) sizes and arrangements on the properties of lightweight concrete. Materials and Structure, 51,57. https://doi.org/10.1617/s11527-018-1182-3
  • [38] Hakim, A. A., El-Basheer, T. M., El-Aziz, A. M. A., & Afifi, M. (2021). Acoustic, ultrasonic, mechanical properties and biodegradability of sawdust/ recycled expanded polystyrene eco-friendly composites. Polymer Testing 99, 107215. https://doi.org/10.1016/j.polymertesting.2021.107215
  • [39] Kandemir, M., Karagöz, İ., & Sepetçioğlu, H. (2023). Experimental ınvestigation of effects of the nucleating agent on mechanical and crystallization behavior of ınjection-molded ısotactic polypropylene. El-cezeri, 10(1), 109-120. https://doi.org/10.31202/ecjse.1165527
  • [40] Cengiz, Ö., Karagöz, İ., & Demirer, H. (2021). Fındık kabuğu ve talk dolgulu polipropilen kompozitlerin mekanik ve ısıl özelliklerinin incelenmesi. 8. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 18-19 Haziran, Eskişehir, Türkiye.
  • [41] Adibelli, Ü., Mutlu, D., Çakir Yiğit, N., & Karagöz, İ. (2022). Ceviz kabuğu dolgulu epoksi hibrit kompozit malzemelerin hazırlanması ve karakterizasyonu. 10. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 13-14 Mayıs, İstanbul, Türkiye.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Aysu Çavuşoğlu 0000-0002-7585-7856

İdris Karagöz 0000-0002-2644-8511

Early Pub Date September 25, 2023
Publication Date September 30, 2023
Published in Issue Year 2023

Cite

APA Çavuşoğlu, A., & Karagöz, İ. (2023). Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance. International Journal of Advances in Engineering and Pure Sciences, 35(3), 379-388. https://doi.org/10.7240/jeps.1285079
AMA Çavuşoğlu A, Karagöz İ. Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance. JEPS. September 2023;35(3):379-388. doi:10.7240/jeps.1285079
Chicago Çavuşoğlu, Aysu, and İdris Karagöz. “Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance”. International Journal of Advances in Engineering and Pure Sciences 35, no. 3 (September 2023): 379-88. https://doi.org/10.7240/jeps.1285079.
EndNote Çavuşoğlu A, Karagöz İ (September 1, 2023) Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance. International Journal of Advances in Engineering and Pure Sciences 35 3 379–388.
IEEE A. Çavuşoğlu and İ. Karagöz, “Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance”, JEPS, vol. 35, no. 3, pp. 379–388, 2023, doi: 10.7240/jeps.1285079.
ISNAD Çavuşoğlu, Aysu - Karagöz, İdris. “Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance”. International Journal of Advances in Engineering and Pure Sciences 35/3 (September 2023), 379-388. https://doi.org/10.7240/jeps.1285079.
JAMA Çavuşoğlu A, Karagöz İ. Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance. JEPS. 2023;35:379–388.
MLA Çavuşoğlu, Aysu and İdris Karagöz. “Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 3, 2023, pp. 379-88, doi:10.7240/jeps.1285079.
Vancouver Çavuşoğlu A, Karagöz İ. Recycled EPS and Epoxy Based Composite Materials: The Combination of Sustainability and Performance. JEPS. 2023;35(3):379-88.