Research Article
BibTex RIS Cite

2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu

Year 2024, , 70 - 78, 25.03.2024
https://doi.org/10.7240/jeps.1329689

Abstract

Al 2024 alaşımları hafif malzemeler oldukları için çeşitli endüstrilerde kullanılmaktadır. Sıcak dövme işlemi, bu malzemeleri oluşturmak için yaygın olarak kullanılan yöntemlerden biridir. Bu çalışmada Al 2024 alaşımlarının sıcak dövme işlemiyle elde edilen spesifik bileşenlerinde meydana gelen dövme kusurları incelenmiştir. Ayrıca, dövme kusurlarının üstesinden gelmek için alternatif bir tasarım önerisinde bulunmaktadır. Bununla birlikte, Al 2024 alaşımının sıcak dövme işleminin sonlu elemanlar modellemesi ve simülasyonunu içermektedir. Al 2024'ün belirlenen sıcaklıktaki malzeme tepkisini modellemek için çekme numunesi hazırlanmış ve dövme sıcaklığında test edilmiştir. Yapılan sonlu elemanlar simülasyonu, dövme bileşenlerde gerilme konsantrasyonu nedeniyle yüzey kusurunun meydana geldiğini göstermiştir. Bu kusur, deneysel çalışmalarda da gözlemlenmiş ve doğrulanmıştır. Bu çalışmada önerilen kusurun oluştuğu bölgeye destek eklenmesini içeren alternatif tasarım, yüzey kusurunun azaltılmasında etkili olmuştur. Solidworks ve Simufact Forming yazılımları kullanılarak geliştirilen ve simüle edilen alternatif tasarım çalışması, bu destek yapısının bindirme kusurunun gözlemlendiği alandaki gerilim konsantrasyonunu önemli ölçüde azalttığını göstermiştir.

References

  • [1] J. R. Davis, Aluminum and aluminum alloys. ASM international, 1993.
  • [2] M. W. Fu and M. W. Fu, “Flow-Induced Defects in Multiscaled Plastic Deformation,” Des. Dev. Met.-Form. Process. Prod. Aided Finite Elem. Simul., pp. 131–180, 2017.
  • [3] M. Sedighi and S. Tokmechi, “A new approach to preform design in forging process of complex parts,” J. Mater. Process. Technol., vol. 197, no. 1–3, pp. 314–324, 2008.
  • [4] X. Ge, Y. Yu, H. Yu, and G. Wang, “Study on Folding Defect Elimination Method of Track Link Forging Based on Preforming Design,” Int. J. Precis. Eng. Manuf., vol. 24, no. 1, pp. 61–71, 2023.
  • [5] D. B. Shan, W. C. Xu, and Y. Lu, “Study on precision forging technology for a complex-shaped light alloy forging,” J. Mater. Process. Technol., vol. 151, no. 1–3, pp. 289–293, 2004.
  • [6] M. Hawryluk and J. Jakubik, “Analysis of forging defects for selected industrial die forging processes,” Eng. Fail. Anal., vol. 59, pp. 396–409, 2016.
  • [7] S. G. Prasad and N. Panigrahi, “Review of the Study of Hot Forging Process Defects,” Stainl. Steel, vol. 1300, p. 920.
  • [8] P. Petrov, V. Perfilov, and S. Stebunov, “Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618,” J. Mater. Process. Technol., vol. 177, no. 1–3, pp. 218–223, 2006.
  • [9] J. L. Wang, M. W. Fu, and J. Q. Ran, “Analysis and avoidance of flow-induced defects in meso-forming process: simulation and experiment,” Int. J. Adv. Manuf. Technol., vol. 68, pp. 1551–1564, 2013.
  • [10] J. L. Wang, M. W. Fu, and J. Q. Ran, “Analysis of size effect on flow-induced defect in micro-scaled forming process,” Int. J. Adv. Manuf. Technol., vol. 73, pp. 1475–1484, 2014.
  • [11] A. M. Handbook, “Forging of Aluminum Alloys,” in Volume 14: Forming and forging, Company of America, 1996, p. 533.
  • [12] H. Öztürk, “Analysıs and Desıgn for Alumınum Forgıng Process,” Degree Master Scıence Mechanıcal Engıneerıng METU, p. 189, 2008.
  • [13] Y. Birol, “The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles,” J. Mater. Process. Technol., vol. 173, no. 1, pp. 84–91, 2006.
  • [14] “Aluminium and aluminium Alloys-Sheet, Strip and Plate, Part 2: Mechanical properties,.” BS EN 485-2, British Standard., 2007.
  • [15] C. R. Keeton, “ASM Metals handbook: forming and forging,” Met. Park OH ASM Int., pp. 108–127, 1988.
  • [16] C.-Y. Wu and Y.-C. Hsu, “The influence of die shape on the flow deformation of extrusion forging,” J. Mater. Process. Technol., vol. 124, no. 1–2, pp. 67–76, 2002.
  • [17] E. Eyere, O. Larry, and O. Peter, “Development of a Mechanical Puller,” Int J Innov Sci Res Technol, vol. 3, no. 7, pp. 284–289, 2018.

Design Development and Simulation to Improve the Folding Defect in the Forging of 2024 Aluminum Alloy

Year 2024, , 70 - 78, 25.03.2024
https://doi.org/10.7240/jeps.1329689

Abstract

Al 2024 alloys are used in various industries due to their lightweight properties. Hot forging process is one of the commonly used methods to fabricate these materials. This study investigates the forging defects occurring in specific components produced by hot forging of Al 2024 alloys. Additionally, it proposes an alternative design to overcome these forging defects. Furthermore, it encompasses the finite element modeling and simulation of the hot forging process of Al 2024 alloy. Tensile specimens were prepared to model the material response of Al 2024 at the determined temperature and tested at forging temperature. The finite element simulation revealed that surface defects occur in forged components due to stress concentration. This defect was observed and verified in experimental studies as well. The alternative design proposed in this study, involving the addition of support to the region where the defect occurs, proved to be effective in reducing surface defects. The alternative design, developed and simulated using Solidworks and Simufact Forming software, demonstrated a significant reduction in stress concentration in the area where the defect was observed.

References

  • [1] J. R. Davis, Aluminum and aluminum alloys. ASM international, 1993.
  • [2] M. W. Fu and M. W. Fu, “Flow-Induced Defects in Multiscaled Plastic Deformation,” Des. Dev. Met.-Form. Process. Prod. Aided Finite Elem. Simul., pp. 131–180, 2017.
  • [3] M. Sedighi and S. Tokmechi, “A new approach to preform design in forging process of complex parts,” J. Mater. Process. Technol., vol. 197, no. 1–3, pp. 314–324, 2008.
  • [4] X. Ge, Y. Yu, H. Yu, and G. Wang, “Study on Folding Defect Elimination Method of Track Link Forging Based on Preforming Design,” Int. J. Precis. Eng. Manuf., vol. 24, no. 1, pp. 61–71, 2023.
  • [5] D. B. Shan, W. C. Xu, and Y. Lu, “Study on precision forging technology for a complex-shaped light alloy forging,” J. Mater. Process. Technol., vol. 151, no. 1–3, pp. 289–293, 2004.
  • [6] M. Hawryluk and J. Jakubik, “Analysis of forging defects for selected industrial die forging processes,” Eng. Fail. Anal., vol. 59, pp. 396–409, 2016.
  • [7] S. G. Prasad and N. Panigrahi, “Review of the Study of Hot Forging Process Defects,” Stainl. Steel, vol. 1300, p. 920.
  • [8] P. Petrov, V. Perfilov, and S. Stebunov, “Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618,” J. Mater. Process. Technol., vol. 177, no. 1–3, pp. 218–223, 2006.
  • [9] J. L. Wang, M. W. Fu, and J. Q. Ran, “Analysis and avoidance of flow-induced defects in meso-forming process: simulation and experiment,” Int. J. Adv. Manuf. Technol., vol. 68, pp. 1551–1564, 2013.
  • [10] J. L. Wang, M. W. Fu, and J. Q. Ran, “Analysis of size effect on flow-induced defect in micro-scaled forming process,” Int. J. Adv. Manuf. Technol., vol. 73, pp. 1475–1484, 2014.
  • [11] A. M. Handbook, “Forging of Aluminum Alloys,” in Volume 14: Forming and forging, Company of America, 1996, p. 533.
  • [12] H. Öztürk, “Analysıs and Desıgn for Alumınum Forgıng Process,” Degree Master Scıence Mechanıcal Engıneerıng METU, p. 189, 2008.
  • [13] Y. Birol, “The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles,” J. Mater. Process. Technol., vol. 173, no. 1, pp. 84–91, 2006.
  • [14] “Aluminium and aluminium Alloys-Sheet, Strip and Plate, Part 2: Mechanical properties,.” BS EN 485-2, British Standard., 2007.
  • [15] C. R. Keeton, “ASM Metals handbook: forming and forging,” Met. Park OH ASM Int., pp. 108–127, 1988.
  • [16] C.-Y. Wu and Y.-C. Hsu, “The influence of die shape on the flow deformation of extrusion forging,” J. Mater. Process. Technol., vol. 124, no. 1–2, pp. 67–76, 2002.
  • [17] E. Eyere, O. Larry, and O. Peter, “Development of a Mechanical Puller,” Int J Innov Sci Res Technol, vol. 3, no. 7, pp. 284–289, 2018.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Research Articles
Authors

Ali Samancı 0000-0002-4982-0486

Hakan Coşkun 0000-0003-2141-4002

Gökhan Atay 0009-0006-0270-3676

Early Pub Date March 18, 2024
Publication Date March 25, 2024
Published in Issue Year 2024

Cite

APA Samancı, A., Coşkun, H., & Atay, G. (2024). 2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu. International Journal of Advances in Engineering and Pure Sciences, 36(1), 70-78. https://doi.org/10.7240/jeps.1329689
AMA Samancı A, Coşkun H, Atay G. 2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu. JEPS. March 2024;36(1):70-78. doi:10.7240/jeps.1329689
Chicago Samancı, Ali, Hakan Coşkun, and Gökhan Atay. “2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi Ve Simülasyonu”. International Journal of Advances in Engineering and Pure Sciences 36, no. 1 (March 2024): 70-78. https://doi.org/10.7240/jeps.1329689.
EndNote Samancı A, Coşkun H, Atay G (March 1, 2024) 2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu. International Journal of Advances in Engineering and Pure Sciences 36 1 70–78.
IEEE A. Samancı, H. Coşkun, and G. Atay, “2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu”, JEPS, vol. 36, no. 1, pp. 70–78, 2024, doi: 10.7240/jeps.1329689.
ISNAD Samancı, Ali et al. “2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi Ve Simülasyonu”. International Journal of Advances in Engineering and Pure Sciences 36/1 (March 2024), 70-78. https://doi.org/10.7240/jeps.1329689.
JAMA Samancı A, Coşkun H, Atay G. 2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu. JEPS. 2024;36:70–78.
MLA Samancı, Ali et al. “2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi Ve Simülasyonu”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 1, 2024, pp. 70-78, doi:10.7240/jeps.1329689.
Vancouver Samancı A, Coşkun H, Atay G. 2024 Alüminyum Alaşımının Dövülmesinde Ortaya Çıkan Katlanma Hatasının İyileştirilmesi İçin Tasarım Geliştirilmesi ve Simülasyonu. JEPS. 2024;36(1):70-8.