Research Article
BibTex RIS Cite
Year 2023, , 494 - 503, 31.12.2023
https://doi.org/10.7240/jeps.1359961

Abstract

References

  • [1] General Assembly of UN. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
  • [2] [Kuram, E. (2021b). Advances in development of green composites based on natural fibers: a review. Emergent Materials, 5. https://doi.org/10.1007/s42247-021-00279-2
  • [3] Zweben, C. (2005). Composite Materials. Mechanical Engineers’ Handbook, 380–417. https://doi.org/10.1002/0471777447.ch10
  • [4] Cheah, L. W. (2010). Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. Doktora Tezi, Massachusetts Instıtute Of Technology, Amerika Birleşik Devletleri s. 31-34.
  • [5] Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications – A review. Journal of Reinforced Plastics and Composites, 38(18), 835–845. https://doi.org/10.1177/0731684419849708
  • [6] Bolat, Ç., Ergene, B., Karakılınç, U., & Gökşenli, A. (2021). Investigating on the machinability assessment of precision machining pumice reinforced AA7075 syntactic foam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(5), 2380–2394. https://doi.org/10.1177/09544062211027613
  • [7] Ergene, B., Şekeroğlu, İ., Bolat, Ç., & Yalçın, B. (2021). An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness. Journal of Mechanical Engineering and Sciences, 15(2), 8169–8177. https://doi.org/10.15282/jmes.15.2.2021.16.0641
  • [8] Rosen, D. W. (2007). Computer-Aided Design for Additive Manufacturing of Cellular Structures. Computer-Aided Design and Applications, 4(5), 585–594. https://doi.org/10.1080/16864360.2007.10738493
  • [9] Ergene, B., & Yalçın, B., (2022). Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 201–218. https://doi.org/10.17341/gazimmfd.945650
  • [10] Ergene, B. (2021). Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 469–484. https://doi.org/10.17341/gazimmfd.934143
  • [11] Fragassa, C., Santulli, C., Pavlović, A., & Šljivić, M. (2015). Improving performance and applicability of green composite materials by hybridization. Contemporary Materials, 6(1). https://doi.org/10.7251/comen1501035f
  • [12] Appadurai, M., Fantin Irudaya Raj, E., & LurthuPushparaj, T. (2022). Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study. Emergent Materials. https://doi.org/10.1007/s42247-022-00375-x
  • [13] [Mayilswamy, N., & Kandasubramanian, B. (2022). Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: a review. Emergent Materials. https://doi.org/10.1007/s42247-022-00354-2
  • [14] Vijayan, R., & Krishnamoorthy, A. (2019). Review On Natural Fiber Reinforced Composites, Materials Today: Proceedings, 16(2), 897-906, https://doi.org/10.1016/j.matpr.2019.05.175.
  • [15] Bledzki, A.K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres, Progress in Polymer Science, 24(2), 221-274, https://doi.org/10.1016/S0079-6700(98)00018-5.
  • [16] Açıkbaş, G. (2018). Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites. Materials Testing, 60(5), 510-518. https://doi.org/10.3139/120.111176
  • [17] Gürü, M., Atar, M., & Yıldırım, R. (2008). Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements. Materials & Design. 29. 284-287. 10.1016/j.matdes.2006.10.023.
  • [18] Gokdai, D., Borazan, A.A. & Acikbas, G. (2017). Effect of Marble: Pine Cone Waste Ratios on Mechanical Properties of Polyester Matrix Composites. Waste Biomass Valor, 8, 1855–1862. https://doi.org/10.1007/s12649-017-9856-6
  • [19] Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • [20] Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. https://doi.org/10.1007/s10853-019-03990-y
  • [21] Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  • [22] Brebu, M. (2020). Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers, 12(1), 166. https://doi.org/10.3390/polym12010166
  • [23] Elmali, M., & Demir, I. (2020). Organik atıkların yapı malzemesi olarak kullanabilirliğinin araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi. 8. 1303-1311. 10.21923/jesd.781554.
  • [24] Ersus, S., Yalçın Melikoğlu, A., & Cesur, S. (2019). Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda. 17. 140-148. 10.24323/akademik-gida.544980.
  • [25] Kapluhan, E. (2014). Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve Türkiye’deki kullanım durumu. Marmara Coğrafya Dergisi , 0 (30) , 0- . DOI: 10.14781/mcd.98631
  • [26] Uzun, B. B., Kılıç, M., & Pütün, A. E. (2007). Ayçiçeği yağından transesterifikasyon yöntemiyle biyodizel üretimi, 1.Ulusal Yağlı Tohumlu Bitkiler ve Biyodizel Sempozyumu, p. 3
  • [27] Kıllı, F. (2007)., Gıda ve yakıt amaçlı kanola ve aspir üretim potansiyeli ve bazı yağlı tohumlu bitkilerin yakıtla ilişkili önemli özellikleri, 1.Ulusal Yağlı Tohumlu Bitkiler ve Biyodizel Sempozyumu, p. 51
  • [28] T.C. Tarım ve Orman Bakanlığı Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Müdürlüğü. Tarım Ürünleri Piyasaları. https://arastirma.tarimorman.gov.tr/tepge/Menu/27/Tarim-Urunleri-Piyasalari
  • [29] Perea-Moreno, M.-A., Manzano-Agugliaro, F., & Perea-Moreno, A.-J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability, 10(10), 3407. https://doi.org/10.3390/su10103407
  • [30] Binboğa, M. Ü. (2019). An Overview of Importance and Sunflower (Helianthus annuus L.,) Production. International Journal of Life Sciences and Biotechnology, 2(2), 58–71. https://doi.org/10.38001/ijlsb.535889
  • [31] Bala-Litwiniak, A., & Zajemska, M. (2020). Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renewable Energy, 162, 151–159. https://doi.org/10.1016/j.renene.2020.07.139
  • [32] Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017
  • [33] Salasinska, K., & Ryszkowska, J. (2014). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces, 22(1), 39–50. https://doi.org/10.1080/15685543.2015.984521
  • [34] Barczewski, M., Andrzejewski, J., Majchrowski, R., Dobrzycki, K., & Formela, K. (2021). Mechanical Properties, Microstructure and Surface Quality of Polypropylene Green Composites as a Function of Sunflower Husk Waste Filler Particle Size and Content. Journal of Renewable Materials, 9(5), 841–853. https://doi.org/10.32604/jrm.2021.014490
  • [35] Barczewski, M., Matykiewicz, D., Piasecki, A., & Szostak, M. (2017). Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties. Composite Interfaces, 25(4), 287–299. https://doi.org/10.1080/09276440.2018.1399713
  • [36] Kuram, E. (2020). Rheological, mechanical and morphological properties of acrylonitrile butadiene styrene composite filled with sunflower seed (Helianthus annuus L.) husk flour. Journal of Polymer Research, 27(8). https://doi.org/10.1007/s10965-020-02211-4
  • [37] Kárpáti, Z., Kun, D., Fekete, E., & Móczó, J. (2021). Structural biomaterials engineered from lignocellulosic agricultural waste. Journal of Applied Polymer Science, 138(26), 50617. https://doi.org/10.1002/app.50617
  • [38] Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M., & Hassan, A. (2015). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447–470. https://doi.org/10.1177/0731684415618459
  • [39] Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • [40] Thamae, T., & Baillie, C. (2007). Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos. Interfaces, 14, 821–836.
  • [41] Goud, G., & Rao, R.N. (2011). Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull. Mater. Sci., 34, 1575–1581.
  • [42] Yan, L. (2012). Effect of alkali treatment on vibration characteristics and mechanical properties of natural fabric reinforced composites. J. Reinf. Plast. Compos, 31, 887–896.
  • [43] Standard Test Method for Tensile Properties of Plastics https://www.astm.org/d0638-10.html
  • [44] American Society for Testing and Materials. (1972). Glossary of terms relating to rubber and rubber technology. ASTM.
  • [45] Sheppard, S. E., & Schmitt, J. J. (1932). Measurement of surface hardness of cellulose derivatives. Industrial & Engineering Chemistry, 4(3), 302–304. https://doi.org/10.1021/ac50079a027
  • [46] Sain, M., Park, S. H., Suhara, F., & Law, S. (2004). Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363–367. https://doi.org/10.1016/s0141-3910(03)00280-5
  • [47] Chen, X., Yu, J., Guo, S., Lu, S., Luo, Z., & He, M. (2009). Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. Journal of Materials Science, 44(5), 1324–1332. https://doi.org/10.1007/s10853-009-3273-6
  • [48] Cisneros-López, E. O., González-López, M. E., Pérez-Fonseca, A. A., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2016). Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 24(1), 35–53. https://doi.org/10.1080/09276440.2016.1184556
  • [49] Irez, A. B. & Kaya, R. (2022). Geri Dönüştürülmüş PP Bazlı Nano Grafen Takviyeli Hibrit Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin Mikromekanik Yöntemler ile Belirlenmesi . International Journal of Advances in Engineering and Pure Sciences , 34 (4) , 569-579 .
  • [50] Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3), 72–79. https://doi.org/10.1088/0508-3443/3/3/302
  • [51] Wells, J.-P. R., & Peter. (1985). Debonding and pull-out processes in fibrous composites. Journal of Materials Science, 20(4), 1275–1284. https://doi.org/10.1007/bf01026323
  • [52] Irez, A. B. & Yirik, S. (2023). Development of Cost-Effective Sustainable Hybrid Composites Based on Recycled PP and Chopped Carbon Fibers. Proceedings of the 8th International Conference on Mechanical, Automotive and Materials Engineering, 145–155. https://doi.org/10.1007/978-981-99-3672-4_12

Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu

Year 2023, , 494 - 503, 31.12.2023
https://doi.org/10.7240/jeps.1359961

Abstract

İklim değişikliği, azalan kaynaklar ve artan hammadde maliyetleri, endüstriyi daha sürdürülebilir, uygun maliyetli ve hafif malzemeler yaratmaya itmiştir. Doğal elyaf kompozitler bu bağlamda çelik gibi mevcut geleneksel malzemelerin yerine kullanılabilecek alternatiflerdir. Ayçiçeği kabuğu (SH), diğer birçok doğal elyafın yanı sıra, tarımsal atık olarak kolayca erişilebilir ve avantajlı malzeme özelliklerine sahiptir. Bu çalışmada, biyo-epoksi matrisi ile ayçiçeği kabukları, toz haline getirildikten sonra karıştırılarak kompozitler imal edilmiş ve sonrasında mekanik karakterizasyona tabii tutulmuşlardır. Ayrıca, ayçiçeği kabuklarının NaOH ile yüzey işlemine tabii tutulmasının mekanik performansa etkisi de bu çalışma kapsamında incelenmiştir. Elde edilen sonuçlara göre, SH takviyesi kompozitlerin çekme dayanımını ve kopma uzamasını düşürürken, elastisite modülünü arttırmıştır. NaOH işlemi de mekanik sonuçlarda bir artışı beraberinde getirmiştir. Mekanik karakterizasyondan sonra hasarlı numuneler SEM fraktografisine tabii tutulmuş ve yüzey işlemine tabii tutulmayan numunelerde matris-elyaf ara yüzey problemleri gözlemlenmiştir. Ayrıca liflerin dekohezyonu da ayrı bir hasar mekanizması olarak karşımıza çıkmıştır. Sonuçlar değerlendirildiğinde, bu tip çevreci ve maliyet etkin kompozitler otomotiv sektöründe yapısal olmayan, parçaların üretiminde tercih edilebilir.

References

  • [1] General Assembly of UN. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
  • [2] [Kuram, E. (2021b). Advances in development of green composites based on natural fibers: a review. Emergent Materials, 5. https://doi.org/10.1007/s42247-021-00279-2
  • [3] Zweben, C. (2005). Composite Materials. Mechanical Engineers’ Handbook, 380–417. https://doi.org/10.1002/0471777447.ch10
  • [4] Cheah, L. W. (2010). Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. Doktora Tezi, Massachusetts Instıtute Of Technology, Amerika Birleşik Devletleri s. 31-34.
  • [5] Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications – A review. Journal of Reinforced Plastics and Composites, 38(18), 835–845. https://doi.org/10.1177/0731684419849708
  • [6] Bolat, Ç., Ergene, B., Karakılınç, U., & Gökşenli, A. (2021). Investigating on the machinability assessment of precision machining pumice reinforced AA7075 syntactic foam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(5), 2380–2394. https://doi.org/10.1177/09544062211027613
  • [7] Ergene, B., Şekeroğlu, İ., Bolat, Ç., & Yalçın, B. (2021). An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness. Journal of Mechanical Engineering and Sciences, 15(2), 8169–8177. https://doi.org/10.15282/jmes.15.2.2021.16.0641
  • [8] Rosen, D. W. (2007). Computer-Aided Design for Additive Manufacturing of Cellular Structures. Computer-Aided Design and Applications, 4(5), 585–594. https://doi.org/10.1080/16864360.2007.10738493
  • [9] Ergene, B., & Yalçın, B., (2022). Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 201–218. https://doi.org/10.17341/gazimmfd.945650
  • [10] Ergene, B. (2021). Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 469–484. https://doi.org/10.17341/gazimmfd.934143
  • [11] Fragassa, C., Santulli, C., Pavlović, A., & Šljivić, M. (2015). Improving performance and applicability of green composite materials by hybridization. Contemporary Materials, 6(1). https://doi.org/10.7251/comen1501035f
  • [12] Appadurai, M., Fantin Irudaya Raj, E., & LurthuPushparaj, T. (2022). Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study. Emergent Materials. https://doi.org/10.1007/s42247-022-00375-x
  • [13] [Mayilswamy, N., & Kandasubramanian, B. (2022). Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: a review. Emergent Materials. https://doi.org/10.1007/s42247-022-00354-2
  • [14] Vijayan, R., & Krishnamoorthy, A. (2019). Review On Natural Fiber Reinforced Composites, Materials Today: Proceedings, 16(2), 897-906, https://doi.org/10.1016/j.matpr.2019.05.175.
  • [15] Bledzki, A.K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres, Progress in Polymer Science, 24(2), 221-274, https://doi.org/10.1016/S0079-6700(98)00018-5.
  • [16] Açıkbaş, G. (2018). Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites. Materials Testing, 60(5), 510-518. https://doi.org/10.3139/120.111176
  • [17] Gürü, M., Atar, M., & Yıldırım, R. (2008). Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements. Materials & Design. 29. 284-287. 10.1016/j.matdes.2006.10.023.
  • [18] Gokdai, D., Borazan, A.A. & Acikbas, G. (2017). Effect of Marble: Pine Cone Waste Ratios on Mechanical Properties of Polyester Matrix Composites. Waste Biomass Valor, 8, 1855–1862. https://doi.org/10.1007/s12649-017-9856-6
  • [19] Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • [20] Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. https://doi.org/10.1007/s10853-019-03990-y
  • [21] Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  • [22] Brebu, M. (2020). Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers, 12(1), 166. https://doi.org/10.3390/polym12010166
  • [23] Elmali, M., & Demir, I. (2020). Organik atıkların yapı malzemesi olarak kullanabilirliğinin araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi. 8. 1303-1311. 10.21923/jesd.781554.
  • [24] Ersus, S., Yalçın Melikoğlu, A., & Cesur, S. (2019). Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda. 17. 140-148. 10.24323/akademik-gida.544980.
  • [25] Kapluhan, E. (2014). Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve Türkiye’deki kullanım durumu. Marmara Coğrafya Dergisi , 0 (30) , 0- . DOI: 10.14781/mcd.98631
  • [26] Uzun, B. B., Kılıç, M., & Pütün, A. E. (2007). Ayçiçeği yağından transesterifikasyon yöntemiyle biyodizel üretimi, 1.Ulusal Yağlı Tohumlu Bitkiler ve Biyodizel Sempozyumu, p. 3
  • [27] Kıllı, F. (2007)., Gıda ve yakıt amaçlı kanola ve aspir üretim potansiyeli ve bazı yağlı tohumlu bitkilerin yakıtla ilişkili önemli özellikleri, 1.Ulusal Yağlı Tohumlu Bitkiler ve Biyodizel Sempozyumu, p. 51
  • [28] T.C. Tarım ve Orman Bakanlığı Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Müdürlüğü. Tarım Ürünleri Piyasaları. https://arastirma.tarimorman.gov.tr/tepge/Menu/27/Tarim-Urunleri-Piyasalari
  • [29] Perea-Moreno, M.-A., Manzano-Agugliaro, F., & Perea-Moreno, A.-J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability, 10(10), 3407. https://doi.org/10.3390/su10103407
  • [30] Binboğa, M. Ü. (2019). An Overview of Importance and Sunflower (Helianthus annuus L.,) Production. International Journal of Life Sciences and Biotechnology, 2(2), 58–71. https://doi.org/10.38001/ijlsb.535889
  • [31] Bala-Litwiniak, A., & Zajemska, M. (2020). Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renewable Energy, 162, 151–159. https://doi.org/10.1016/j.renene.2020.07.139
  • [32] Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017
  • [33] Salasinska, K., & Ryszkowska, J. (2014). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces, 22(1), 39–50. https://doi.org/10.1080/15685543.2015.984521
  • [34] Barczewski, M., Andrzejewski, J., Majchrowski, R., Dobrzycki, K., & Formela, K. (2021). Mechanical Properties, Microstructure and Surface Quality of Polypropylene Green Composites as a Function of Sunflower Husk Waste Filler Particle Size and Content. Journal of Renewable Materials, 9(5), 841–853. https://doi.org/10.32604/jrm.2021.014490
  • [35] Barczewski, M., Matykiewicz, D., Piasecki, A., & Szostak, M. (2017). Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties. Composite Interfaces, 25(4), 287–299. https://doi.org/10.1080/09276440.2018.1399713
  • [36] Kuram, E. (2020). Rheological, mechanical and morphological properties of acrylonitrile butadiene styrene composite filled with sunflower seed (Helianthus annuus L.) husk flour. Journal of Polymer Research, 27(8). https://doi.org/10.1007/s10965-020-02211-4
  • [37] Kárpáti, Z., Kun, D., Fekete, E., & Móczó, J. (2021). Structural biomaterials engineered from lignocellulosic agricultural waste. Journal of Applied Polymer Science, 138(26), 50617. https://doi.org/10.1002/app.50617
  • [38] Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M., & Hassan, A. (2015). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447–470. https://doi.org/10.1177/0731684415618459
  • [39] Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • [40] Thamae, T., & Baillie, C. (2007). Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos. Interfaces, 14, 821–836.
  • [41] Goud, G., & Rao, R.N. (2011). Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull. Mater. Sci., 34, 1575–1581.
  • [42] Yan, L. (2012). Effect of alkali treatment on vibration characteristics and mechanical properties of natural fabric reinforced composites. J. Reinf. Plast. Compos, 31, 887–896.
  • [43] Standard Test Method for Tensile Properties of Plastics https://www.astm.org/d0638-10.html
  • [44] American Society for Testing and Materials. (1972). Glossary of terms relating to rubber and rubber technology. ASTM.
  • [45] Sheppard, S. E., & Schmitt, J. J. (1932). Measurement of surface hardness of cellulose derivatives. Industrial & Engineering Chemistry, 4(3), 302–304. https://doi.org/10.1021/ac50079a027
  • [46] Sain, M., Park, S. H., Suhara, F., & Law, S. (2004). Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363–367. https://doi.org/10.1016/s0141-3910(03)00280-5
  • [47] Chen, X., Yu, J., Guo, S., Lu, S., Luo, Z., & He, M. (2009). Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. Journal of Materials Science, 44(5), 1324–1332. https://doi.org/10.1007/s10853-009-3273-6
  • [48] Cisneros-López, E. O., González-López, M. E., Pérez-Fonseca, A. A., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2016). Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 24(1), 35–53. https://doi.org/10.1080/09276440.2016.1184556
  • [49] Irez, A. B. & Kaya, R. (2022). Geri Dönüştürülmüş PP Bazlı Nano Grafen Takviyeli Hibrit Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin Mikromekanik Yöntemler ile Belirlenmesi . International Journal of Advances in Engineering and Pure Sciences , 34 (4) , 569-579 .
  • [50] Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3), 72–79. https://doi.org/10.1088/0508-3443/3/3/302
  • [51] Wells, J.-P. R., & Peter. (1985). Debonding and pull-out processes in fibrous composites. Journal of Materials Science, 20(4), 1275–1284. https://doi.org/10.1007/bf01026323
  • [52] Irez, A. B. & Yirik, S. (2023). Development of Cost-Effective Sustainable Hybrid Composites Based on Recycled PP and Chopped Carbon Fibers. Proceedings of the 8th International Conference on Mechanical, Automotive and Materials Engineering, 145–155. https://doi.org/10.1007/978-981-99-3672-4_12
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization
Journal Section Research Articles
Authors

Asya Nur Sunmaz 0009-0006-4720-5822

Ulaş Doğan 0009-0005-8040-1262

Alaeddin Burak İrez 0000-0001-7316-7694

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Sunmaz, A. N., Doğan, U., & İrez, A. B. (2023). Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences, 35(4), 494-503. https://doi.org/10.7240/jeps.1359961
AMA Sunmaz AN, Doğan U, İrez AB. Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. JEPS. December 2023;35(4):494-503. doi:10.7240/jeps.1359961
Chicago Sunmaz, Asya Nur, Ulaş Doğan, and Alaeddin Burak İrez. “Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci Ve Maliyet Etkin Kompozitlerin Geliştirilmesi Ve Mekanik Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 35, no. 4 (December 2023): 494-503. https://doi.org/10.7240/jeps.1359961.
EndNote Sunmaz AN, Doğan U, İrez AB (December 1, 2023) Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences 35 4 494–503.
IEEE A. N. Sunmaz, U. Doğan, and A. B. İrez, “Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu”, JEPS, vol. 35, no. 4, pp. 494–503, 2023, doi: 10.7240/jeps.1359961.
ISNAD Sunmaz, Asya Nur et al. “Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci Ve Maliyet Etkin Kompozitlerin Geliştirilmesi Ve Mekanik Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 35/4 (December 2023), 494-503. https://doi.org/10.7240/jeps.1359961.
JAMA Sunmaz AN, Doğan U, İrez AB. Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. JEPS. 2023;35:494–503.
MLA Sunmaz, Asya Nur et al. “Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci Ve Maliyet Etkin Kompozitlerin Geliştirilmesi Ve Mekanik Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 4, 2023, pp. 494-03, doi:10.7240/jeps.1359961.
Vancouver Sunmaz AN, Doğan U, İrez AB. Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. JEPS. 2023;35(4):494-503.