Research Article
BibTex RIS Cite

Photocatalytic Hydrogen Production by CuS/CuInS2/TiO2: Effect of Photocatalyst Synthesis Method

Year 2024, , 290 - 294, 26.09.2024
https://doi.org/10.7240/jeps.1530477

Abstract

Photocatalytic hydrogen production is known as a clean and renewable energy production process with significant potential to convert solar energy into chemical energy by using suitable photocatalysts. In this study, it was aimed to synthesize CuS/CuInS2/TiO2 nanocomposite to increase H2 production under solar light. CuS/CuInS2/TiO2 was prepared by two different synthesis methods, solid-solid synthesis and in situ synthesis; the photocatalyst composition and photocatalyst synthesis method with the highest H2 production were determined.

References

  • Shrestha, N. K., Yang, M., Nah, Y.-C., Paramasivam, I., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration, Electrochemistry Communications, 12, 254–257.
  • Wang, F., Zheng, Z., Jia, F. (2012). Enhanced photoelectrochemical water splitting on Pt-loaded TiO2 nanorods array thin film, Materials Letters, 71, 141–144.
  • Dholam, R., Patel, N., Miotello, A. (2011). Efficient H2 production by watersplitting using indium tin-oxide/V-doped TiO2 multilayer thin film photocatalyst, International Journal of Hydrogen Energy, 36, 6519-6528.
  • Hoang, S., Guo, S., Hahn, N. T., Bard, A. J., Mullins C. B. (2012). Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires, Nano Letters, 12, 26−32.
  • Dahl, M., Liu, Y., Yin, Y. (2014). Composite Titanium Dioxide Nanomaterials, Chem. Rev. 114, 19, 9853–988.
  • Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J., Zhang, H. (2013). Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities, Small, 9, 140–147.
  • Yan, Y., Yang M., Shi, H., Wang, C., Fan, J., Liu, E., Hu, X. (2019). CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production, Ceramics International 45, 6093–6101.
  • Zheng, L., Teng, F., Ye, X., Zheng, H., Fang, X. (2020). Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures, Adv. Energy Mater., 10, 1902355.
  • Liu, Y., Zheng, X., Yang, Y., Li, J., Liu, W., Shen, Y., Tian, X. (2022). Photocatalytic Hydrogen Evolution Using Ternary-Metal-Sulfide/TiO2 Heterojunction Photocatalysts, ChemCatChem, 14, e202101439.
  • Wei, N., Wu, Y., Wang, M., Sun, W., Li, Z., Ding, L., Cui, H. (2019). Construction of noble-metal-free TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposite for highly efficient photocatalytic hydrogen evolution, Nanotechnology, 30, 045701.
  • Yuan, Y.-J., Fang, G., Chen, D., Huang, Y., Yang, L.-X., Cao, D.-P., Wang, J., Yu, Z.-T., Zou, Z.-G. (2018). High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production, Dalton Trans., 47, 5652.
  • Chouhan, L., Srivastava, S. K. (2022). Role of Anatase/Rutile Phases in Tuning the Magnetic, Optical, and Dielectric Properties of Mg‑Doped TiO2 Compounds for Spintronics Application, Journal of Superconductivity and Novel Magnetism, 35:3807–3812.
  • Spurr, R.A., Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal Chem. 29, 760–762.
  • Wang, J., Wang, X., Yang, J., Dong, X., Chen, X., Zhang, Y., Zeng, W., Xu, J., Wang, J., Huang, G., Pan, F. (2022). Core-Shell CuS@MoS2 Cathodes for High-Performance Hybrid Mg-Li Ion Batteries, J. Electrochem. Soc., 169, 073502.
  • Li, Z., Mi, L., Chen, W., Hou, H., Liu, C., Wang, H., Zheng, Z., Shen, C. (2012). Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm.,14, 3965-3971.
  • Shei, S.-C., Chiang, W.-J., Chang, S.-J. (2015). Synthesis of CuInS2 quantum dots using polyetheramine as solvent. Nanoscale Research Letters, 10, 122.

CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi

Year 2024, , 290 - 294, 26.09.2024
https://doi.org/10.7240/jeps.1530477

Abstract

Fotokatalitik hidrojen üretimi, uygun fotokatalizörler kullanılarak güneş enerjisini kimyasal enerjiye dönüştürme konusunda önemli bir potansiyele sahip, temiz ve yenilenebilir bir enerji üretim süreci olarak bilinmektedir. Bu çalışmada, solar ışık altında H2 üretimini arttırmak için CuS/CuInS2/TiO2 nanokompozitinin sentezlenmesini hedeflenmiştir. CuS/CuInS2/TiO2 katı-katı sentez ve yerinde sentez olmak üzere iki farklı sentez metodu ile hazırlanmıştır; H2 üretiminin en yüksek olduğu fotokatalizör kompozisyonu ve fotokatalizör sentez metodu belirlenmiştir.

References

  • Shrestha, N. K., Yang, M., Nah, Y.-C., Paramasivam, I., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration, Electrochemistry Communications, 12, 254–257.
  • Wang, F., Zheng, Z., Jia, F. (2012). Enhanced photoelectrochemical water splitting on Pt-loaded TiO2 nanorods array thin film, Materials Letters, 71, 141–144.
  • Dholam, R., Patel, N., Miotello, A. (2011). Efficient H2 production by watersplitting using indium tin-oxide/V-doped TiO2 multilayer thin film photocatalyst, International Journal of Hydrogen Energy, 36, 6519-6528.
  • Hoang, S., Guo, S., Hahn, N. T., Bard, A. J., Mullins C. B. (2012). Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires, Nano Letters, 12, 26−32.
  • Dahl, M., Liu, Y., Yin, Y. (2014). Composite Titanium Dioxide Nanomaterials, Chem. Rev. 114, 19, 9853–988.
  • Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J., Zhang, H. (2013). Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities, Small, 9, 140–147.
  • Yan, Y., Yang M., Shi, H., Wang, C., Fan, J., Liu, E., Hu, X. (2019). CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production, Ceramics International 45, 6093–6101.
  • Zheng, L., Teng, F., Ye, X., Zheng, H., Fang, X. (2020). Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures, Adv. Energy Mater., 10, 1902355.
  • Liu, Y., Zheng, X., Yang, Y., Li, J., Liu, W., Shen, Y., Tian, X. (2022). Photocatalytic Hydrogen Evolution Using Ternary-Metal-Sulfide/TiO2 Heterojunction Photocatalysts, ChemCatChem, 14, e202101439.
  • Wei, N., Wu, Y., Wang, M., Sun, W., Li, Z., Ding, L., Cui, H. (2019). Construction of noble-metal-free TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposite for highly efficient photocatalytic hydrogen evolution, Nanotechnology, 30, 045701.
  • Yuan, Y.-J., Fang, G., Chen, D., Huang, Y., Yang, L.-X., Cao, D.-P., Wang, J., Yu, Z.-T., Zou, Z.-G. (2018). High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production, Dalton Trans., 47, 5652.
  • Chouhan, L., Srivastava, S. K. (2022). Role of Anatase/Rutile Phases in Tuning the Magnetic, Optical, and Dielectric Properties of Mg‑Doped TiO2 Compounds for Spintronics Application, Journal of Superconductivity and Novel Magnetism, 35:3807–3812.
  • Spurr, R.A., Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal Chem. 29, 760–762.
  • Wang, J., Wang, X., Yang, J., Dong, X., Chen, X., Zhang, Y., Zeng, W., Xu, J., Wang, J., Huang, G., Pan, F. (2022). Core-Shell CuS@MoS2 Cathodes for High-Performance Hybrid Mg-Li Ion Batteries, J. Electrochem. Soc., 169, 073502.
  • Li, Z., Mi, L., Chen, W., Hou, H., Liu, C., Wang, H., Zheng, Z., Shen, C. (2012). Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm.,14, 3965-3971.
  • Shei, S.-C., Chiang, W.-J., Chang, S.-J. (2015). Synthesis of CuInS2 quantum dots using polyetheramine as solvent. Nanoscale Research Letters, 10, 122.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Catalytic Activity
Journal Section Research Articles
Authors

Özge Kerkez Kuyumcu 0000-0002-8991-273X

Early Pub Date September 19, 2024
Publication Date September 26, 2024
Submission Date August 8, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024

Cite

APA Kerkez Kuyumcu, Ö. (2024). CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi. International Journal of Advances in Engineering and Pure Sciences, 36(3), 290-294. https://doi.org/10.7240/jeps.1530477
AMA Kerkez Kuyumcu Ö. CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi. JEPS. September 2024;36(3):290-294. doi:10.7240/jeps.1530477
Chicago Kerkez Kuyumcu, Özge. “CuS/CuInS2/TiO2 Ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi”. International Journal of Advances in Engineering and Pure Sciences 36, no. 3 (September 2024): 290-94. https://doi.org/10.7240/jeps.1530477.
EndNote Kerkez Kuyumcu Ö (September 1, 2024) CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi. International Journal of Advances in Engineering and Pure Sciences 36 3 290–294.
IEEE Ö. Kerkez Kuyumcu, “CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi”, JEPS, vol. 36, no. 3, pp. 290–294, 2024, doi: 10.7240/jeps.1530477.
ISNAD Kerkez Kuyumcu, Özge. “CuS/CuInS2/TiO2 Ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi”. International Journal of Advances in Engineering and Pure Sciences 36/3 (September 2024), 290-294. https://doi.org/10.7240/jeps.1530477.
JAMA Kerkez Kuyumcu Ö. CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi. JEPS. 2024;36:290–294.
MLA Kerkez Kuyumcu, Özge. “CuS/CuInS2/TiO2 Ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 3, 2024, pp. 290-4, doi:10.7240/jeps.1530477.
Vancouver Kerkez Kuyumcu Ö. CuS/CuInS2/TiO2 ile Fotokatalitik Hidrojen Üretimi: Fotokatalizör Sentez Yönteminin Etkisi. JEPS. 2024;36(3):290-4.