This study focuses on the problem of wheat yellow-rust disease caused by climate change and incorrect farming methods. Early detection of the disease, which manifests as yellow-orange spores on wheat leaves, is crucial for mitigating issues such as reduced crop yield, increased pesticide use, and environmental harm. Current CNN-based semantic segmentation models focus mainly on processing local pixels, which can be insufficient for large areas. This study proposes a novel version of the UNetFormer architecture, enhancing the CNN-based encoder with CBAM modules while utilizing a Transformer-based decoder to address the limitations of current approaches. Specifically, the model incorporates a Convolutional Block Attention Module (CBAM) to refine feature extraction along spatial and channel axes. CBAM modules allow the network to prioritize meaningful features, particularly near-infrared (NIR) wavelength reflections critical for detecting wheat yellow-rust. The proposed UNetFormer2 model effectively captures long-range dependencies in multispectral remote sensing images to improve disease detection across large agricultural areas. Specifically, the model achieves an IoU improvement of 2.1% for RGB, 4.6% for NDVI, and 3% for NIR compared to the baseline UNetFormer model. This work aims to improve wheat yellow-rust disease monitoring efficiency and contribute to more sustainable agricultural practices by reducing unnecessary pesticide application.
This study focuses on the problem of wheat yellow-rust disease caused by climate change and incorrect farming methods. Early detection of the disease, which manifests as yellow-orange spores on wheat leaves, is crucial for mitigating issues such as reduced crop yield, increased pesticide use, and environmental harm. Current CNN-based semantic segmentation models focus mainly on processing local pixels, which can be insufficient for large areas. This study proposes a novel version of the UNetFormer architecture, enhancing the CNN-based encoder with CBAM modules while utilizing a Transformer-based decoder to address the limitations of current approaches. Specifically, the model incorporates a Convolutional Block Attention Module (CBAM) to refine feature extraction along spatial and channel axes. CBAM modules allow the network to prioritize meaningful features, particularly near-infrared (NIR) wavelength reflections critical for detecting wheat yellow-rust. The proposed UNetFormer2 model effectively captures long-range dependencies in multispectral remote sensing images to improve disease detection across large agricultural areas. Specifically, the model achieves an IoU improvement of 2.1% for RGB, 4.6% for NDVI, and 3% for NIR compared to the baseline UNetFormer model. This work aims to improve wheat yellow-rust disease monitoring efficiency and contribute to more sustainable agricultural practices by reducing unnecessary pesticide application.
| Primary Language | English |
|---|---|
| Subjects | Deep Learning |
| Journal Section | Research Article |
| Authors | |
| Submission Date | January 19, 2025 |
| Acceptance Date | April 17, 2025 |
| Early Pub Date | June 16, 2025 |
| Publication Date | June 25, 2025 |
| Published in Issue | Year 2025 Volume: 37 Issue: 2 |