Conference Paper
BibTex RIS Cite

İşleme Yönteminin Plastik Enjeksiyon Kalıp Çeliğinin Yüzey ve Yüzey Altı Özelliği Üzerine Etkisi

Year 2019, , 17 - 22, 20.05.2019
https://doi.org/10.7240/jeps.451359

Abstract



AISI P20, plastik
enjeksiyon kalıbı üretiminde yaygın olarak kullanılan sertleştirilmiş kalıp
çeliğidir. Kalıbın yüzey karakteristikleri, plastik enjeksiyon kalıp
parçalarını kontrol etmede önemli rol oynar. İlaveten kalıbın özellikleri büyük
ölçüde talaşlı imalat prosesi tarafından etkilenir. Bu çalışma plastik
enjeksiyon kalıp çeliklerinin yüzey özellikleri üzerindeki işleme süreci
koşullarına odaklanan kapsamlı deneysel çalışmayı sunmaktadır. Giriş
parametreleri, kesme hızları, ilerleme oranları ve kesici uçların
geometrisidir( silici uç ve normal uç ). Ölçülen çıktı parametreleri, işlenmiş
parçaların yüzey altı sertliği ve kesme işleminden kaynaklanan faz dönüşümüdür.
Deneysel sonuçlar, silici ucun parçaların yüzey kalitesini artırmaya önemli
ölçüde katkıda bulunduğu göstermektedir. Ayrıca mikrosertlik ölçümü, bu
alaşımın işlenmesinden kaynaklanan ısıl yumuşamanın gerçekleştiğini
göstermektedir. XRD verileri işlenmiş numunelerde pik genişlemesi ve şiddet
artışını göstermektedir.




References

  • [1] Dewangan, S., C. Biswas and S. Gangopadhyay (2014), "Influence of different tool electrode materials on EDMed surface integrity of AISI P20 tool steel." Materials and Manufacturing Processes 29(11-12): 1387-1394. DOI: 10.1080/10426914.2014.930892
  • [2] Grzesik, W. and S. Brol (2009), "Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials." Journal of materials processing technology 209(5): 2522-2531. DOI: 10.1016/j.jmatprotec.2008.06.009 [3] Gupta, A., H. Singh and A. Aggarwal (2011), "Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel." Expert Systems with Applications 38(6): 6822-6828. DOI: 10.1016/j.eswa.2010.12.057
  • [4] Kaynak, Y. (2014), "Machining and phase transformation response of room-temperature austenitic NiTi shape memory alloy." Journal of materials engineering and performance 23(9): 3354-3360. DOI:10.1007/s11665-014-1058-9
  • [5] Kaynak, Y., H. Karaca and I. Jawahir (2015), "Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining." Journal of Materials Engineering and Performance 24(1): 452-460. DOI: 10.1007/s11665-014-1247-6 [6] Kaynak, Y., T. Lu and I. Jawahir (2014), "Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining." Machining Science and Technology 18(2): 149-198. DOI: 10.1080/10910344.2014.897836
  • [7] Kaynak, Y., S. Robertson, H. Karaca and I. Jawahir (2015), "Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: The influence of cooling/lubricating, melting, and heat treatment conditions." Journal of Materials Processing Technology 215: 95-104. DOI: 10.1016/j.jmatprotec.2014.07.015
  • [8] Khan, M., M. Mithu and N. R. Dhar (2009), "Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid." Journal of materials processing Technology 209(15-16): 5573-5583. DOI: https://doi.org/10.1016/j.jmatprotec.2009.05.014
  • [9] Kiyak, M. and O. Cakır (2007), "Examination of machining parameters on surface roughness in EDM of tool steel." Journal of Materials Processing Technology 191(1-3): 141-144.
  • [10] Qureshi, A. (2015), "Optimization of Cutting parameters for Surface roughness in CNC turning of P20 steel."
  • [11] Ramesh, A., S. Melkote, L. Allard, L. Riester and T. Watkins (2005), "Analysis of white layers formed in hard turning of AISI 52100 steel." Materials Science and Engineering: A 390(1-2): 88-97. DOI: 10.1016/j.ijmachtools.2007.09.007
  • [12] Zeilmann, R. P., A. Tomé, A. Antonioli, D. C. Calza and M. V. R. Braghini (2008), Analysis of the surface integrity in milling of AISI P20 steel, SAE Technical Paper.

The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel

Year 2019, , 17 - 22, 20.05.2019
https://doi.org/10.7240/jeps.451359

Abstract



AISI P20 is prehardened
mold steel that is commonly used to manufacture plastic injection molding. The
surface characteristics of molds play crucial role to control plastic injected
molds parts. Besides, the characteristic of molds is mainly influenced by
machining process, the manufacturing process to produce molds. This study
presents the extensive experimental work focusing on the machining processing
conditions on the surface characteristics of Plastic Injection mold steels. The
input parameters are cutting speeds, feed rates and cutting inserts’ geometry
(wiper and non-wiper). The measured output parameters are subsurface hardness
of machined parts and phase transformation induced from cutting process.
Experimental results show that wiper insert significantly helps to improve
surface quality of components. Besides, microhardness measurement shows that
thermal softening occurs resulting from machining of this alloy. XRD data
illustrates peak broadening and increased intensity with machined samples.




References

  • [1] Dewangan, S., C. Biswas and S. Gangopadhyay (2014), "Influence of different tool electrode materials on EDMed surface integrity of AISI P20 tool steel." Materials and Manufacturing Processes 29(11-12): 1387-1394. DOI: 10.1080/10426914.2014.930892
  • [2] Grzesik, W. and S. Brol (2009), "Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials." Journal of materials processing technology 209(5): 2522-2531. DOI: 10.1016/j.jmatprotec.2008.06.009 [3] Gupta, A., H. Singh and A. Aggarwal (2011), "Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel." Expert Systems with Applications 38(6): 6822-6828. DOI: 10.1016/j.eswa.2010.12.057
  • [4] Kaynak, Y. (2014), "Machining and phase transformation response of room-temperature austenitic NiTi shape memory alloy." Journal of materials engineering and performance 23(9): 3354-3360. DOI:10.1007/s11665-014-1058-9
  • [5] Kaynak, Y., H. Karaca and I. Jawahir (2015), "Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining." Journal of Materials Engineering and Performance 24(1): 452-460. DOI: 10.1007/s11665-014-1247-6 [6] Kaynak, Y., T. Lu and I. Jawahir (2014), "Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining." Machining Science and Technology 18(2): 149-198. DOI: 10.1080/10910344.2014.897836
  • [7] Kaynak, Y., S. Robertson, H. Karaca and I. Jawahir (2015), "Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: The influence of cooling/lubricating, melting, and heat treatment conditions." Journal of Materials Processing Technology 215: 95-104. DOI: 10.1016/j.jmatprotec.2014.07.015
  • [8] Khan, M., M. Mithu and N. R. Dhar (2009), "Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid." Journal of materials processing Technology 209(15-16): 5573-5583. DOI: https://doi.org/10.1016/j.jmatprotec.2009.05.014
  • [9] Kiyak, M. and O. Cakır (2007), "Examination of machining parameters on surface roughness in EDM of tool steel." Journal of Materials Processing Technology 191(1-3): 141-144.
  • [10] Qureshi, A. (2015), "Optimization of Cutting parameters for Surface roughness in CNC turning of P20 steel."
  • [11] Ramesh, A., S. Melkote, L. Allard, L. Riester and T. Watkins (2005), "Analysis of white layers formed in hard turning of AISI 52100 steel." Materials Science and Engineering: A 390(1-2): 88-97. DOI: 10.1016/j.ijmachtools.2007.09.007
  • [12] Zeilmann, R. P., A. Tomé, A. Antonioli, D. C. Calza and M. V. R. Braghini (2008), Analysis of the surface integrity in milling of AISI P20 steel, SAE Technical Paper.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ömer Şaban Kamber 0000-0002-0260-8533

Emre Taşçıoğlu This is me 0000-0001-8913-5304

Publication Date May 20, 2019
Published in Issue Year 2019

Cite

APA Kamber, Ö. Ş., & Taşçıoğlu, E. (2019). The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel. International Journal of Advances in Engineering and Pure Sciences, 31, 17-22. https://doi.org/10.7240/jeps.451359
AMA Kamber ÖŞ, Taşçıoğlu E. The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel. JEPS. May 2019;31:17-22. doi:10.7240/jeps.451359
Chicago Kamber, Ömer Şaban, and Emre Taşçıoğlu. “The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel”. International Journal of Advances in Engineering and Pure Sciences 31, May (May 2019): 17-22. https://doi.org/10.7240/jeps.451359.
EndNote Kamber ÖŞ, Taşçıoğlu E (May 1, 2019) The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel. International Journal of Advances in Engineering and Pure Sciences 31 17–22.
IEEE Ö. Ş. Kamber and E. Taşçıoğlu, “The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel”, JEPS, vol. 31, pp. 17–22, 2019, doi: 10.7240/jeps.451359.
ISNAD Kamber, Ömer Şaban - Taşçıoğlu, Emre. “The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel”. International Journal of Advances in Engineering and Pure Sciences 31 (May 2019), 17-22. https://doi.org/10.7240/jeps.451359.
JAMA Kamber ÖŞ, Taşçıoğlu E. The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel. JEPS. 2019;31:17–22.
MLA Kamber, Ömer Şaban and Emre Taşçıoğlu. “The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel”. International Journal of Advances in Engineering and Pure Sciences, vol. 31, 2019, pp. 17-22, doi:10.7240/jeps.451359.
Vancouver Kamber ÖŞ, Taşçıoğlu E. The Effect of Processing on The Surface and Subsurface Characteristic of Plastic Injection Mold Steel. JEPS. 2019;31:17-22.