Research Article
BibTex RIS Cite

MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ

Year 2019, , 232 - 237, 01.09.2019
https://doi.org/10.7240/jeps.521082

Abstract

Bu çalışmada silikon yağ ve demir (Fe)
bazlı manyetoreolojik (MR) akışkanlarının kapalı durum (off-state) viskozite
özellikleri incelenmiştir. Farklı oranlardaki manyetik faz miktarı (hacmen %5,
10, 20, 30 ve 40) ile hazırlanan MR akışkanlarının rölatif viskozitesinin (η
rel)
– manyetik faz miktarına (φ) olan ilişkisi deneysel olarak tespit edilmiştir. Elde
edilen veriler Mooney ve Krieger-Dougherty modelleriyle karşılaştırılmıştır.
Deneysel sonuçlar MR akışkanın viskozitesinin manyetik faz miktarı ile önemli
ölçüde arttığını göstermiştir. Ayrıca viskozite profilleri Mooney modeli ile
uyumlu bulunmuştur.
 

References

  • [1] Genc, S ve Phule, P.P. (2002). Rheological properties of magnetorheological fluids. Smart Materials and Structures., 11(1). 140-146.
  • [2] Choi H. J., Taeg, M., Kwon, M. Jhon, S. (2000). Viscosity of Magnetic Particle Suspensions. Journal of Magnetism and Magnetic Materials., 209, 228-230.
  • [3] Smith, T. L. ve Bruce C. A., (1979). Intrinsic viscosities and other rheological properties of flocculated suspensions of non-magnetic and magnetic ferric oxides. Journal of Colloid and Interface Science., 72, 13-26.
  • [4] Jeon J. ve Koo, S., (2012). Viscosity and dispersion state of magnetic suspensions. Journal of Magnetism and Magnetic Materials., 324(4), 424-429.
  • [5] Sundar, L. S. ve diğerleri., (2012). Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chemical Physics Letters., 554: 236-242.
  • [6] Rich, J. P., Doyle P.S., ve McKinley G.H., (2012), Magnetorheology in an aging, yield stress matrix fluid. Rheologica Acta., 51(7), 579-593.
  • [7] Jolly M.R., Bender, J.W., ve Carlson, J.D., (1999). Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures,. 10(1), 5-13.
  • [8] Ginder J.M., Davis, L.C., ve Elie L.D., (1996). Rheology of magnetorheological fluids: Models and measurements. International Journal of Modern Physics B., 10(23-24), 3293-3303.
  • [9] Carlson, J.D., Catanzarite, D.M.ve StClair, K.A. (1996) Commercial magneto-rheological fluid devices. International Journal of Modern Physics B., 10(23-24), 2857-2865.
  • [10] Yuanling S., Xiaolin L., and Jianfeng C., (2004), The maximum solid loading and viscosity estimation of ultra-fine BaTiO3 aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 247(1), 27-34.
  • [11] Falk, V. ve D'Ortona, U., A (2002)., Polydisperse sedimentation and polydisperse packing model. Powder technology., 128(2), 229-235.
  • [12] Krieger I.M., ve Dougherty T.J., (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres. Journal of Rheology., 3, 137.
  • [13] Liu,. D. M ve Tseng W. J., (2000). Rheology of injection-molded zirconia-wax mixtures. Journal of Materials Science., 35(4), 1009-1016.
  • [14] Bergstrom, L. ve diğerleri., (1997). Colloidal processing of a very fine BaTiO3 powder—effect of particle interactions on the suspension properties, consolidation, and sintering behavior. Journal of the American Ceramic Society., 80(2), 291-300.
  • [15] M. Mooney., (1951). The viscosity of a concentrated suspension of spherical particles. Journal of Colloid Science., 6(2), 162-170.
  • [16] Tseng W.J.ve Li, S.Y. (2002). Rheology of colloidal BaTiO3 suspension with ammonium polyacrylate as a dispersant. Materials Science and Engineering: A., 333(1), 314-319.

INVESTIGATION OF OFF-STATE VISCOSITY OF MAGNETORHEOLOGICAL (MR) FLUIDS

Year 2019, , 232 - 237, 01.09.2019
https://doi.org/10.7240/jeps.521082

Abstract

In this study the off-state viscosity
characteristics of silicone oil and iron (Fe) based  magnetorheological (MR) fluids were
investigated. The relationship between relative viscosity (ηrel) and
the amount of magnetic phase (φ) of MR fluids that were prepared with
various  concentrations of magnetic phase
(5, 10, 20, 30, 40 vol%) was determined experimentally. The data obtained from
experimental study were compared with Mooney and Krieger-Dougherty models. The
experimental results showed that the viscosity had a shear thinning behavior
and it increased significantly with increasing magnetic phase. Besides, the
viscosity profile was found to be in good agreement with Mooney model. 

References

  • [1] Genc, S ve Phule, P.P. (2002). Rheological properties of magnetorheological fluids. Smart Materials and Structures., 11(1). 140-146.
  • [2] Choi H. J., Taeg, M., Kwon, M. Jhon, S. (2000). Viscosity of Magnetic Particle Suspensions. Journal of Magnetism and Magnetic Materials., 209, 228-230.
  • [3] Smith, T. L. ve Bruce C. A., (1979). Intrinsic viscosities and other rheological properties of flocculated suspensions of non-magnetic and magnetic ferric oxides. Journal of Colloid and Interface Science., 72, 13-26.
  • [4] Jeon J. ve Koo, S., (2012). Viscosity and dispersion state of magnetic suspensions. Journal of Magnetism and Magnetic Materials., 324(4), 424-429.
  • [5] Sundar, L. S. ve diğerleri., (2012). Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chemical Physics Letters., 554: 236-242.
  • [6] Rich, J. P., Doyle P.S., ve McKinley G.H., (2012), Magnetorheology in an aging, yield stress matrix fluid. Rheologica Acta., 51(7), 579-593.
  • [7] Jolly M.R., Bender, J.W., ve Carlson, J.D., (1999). Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures,. 10(1), 5-13.
  • [8] Ginder J.M., Davis, L.C., ve Elie L.D., (1996). Rheology of magnetorheological fluids: Models and measurements. International Journal of Modern Physics B., 10(23-24), 3293-3303.
  • [9] Carlson, J.D., Catanzarite, D.M.ve StClair, K.A. (1996) Commercial magneto-rheological fluid devices. International Journal of Modern Physics B., 10(23-24), 2857-2865.
  • [10] Yuanling S., Xiaolin L., and Jianfeng C., (2004), The maximum solid loading and viscosity estimation of ultra-fine BaTiO3 aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 247(1), 27-34.
  • [11] Falk, V. ve D'Ortona, U., A (2002)., Polydisperse sedimentation and polydisperse packing model. Powder technology., 128(2), 229-235.
  • [12] Krieger I.M., ve Dougherty T.J., (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres. Journal of Rheology., 3, 137.
  • [13] Liu,. D. M ve Tseng W. J., (2000). Rheology of injection-molded zirconia-wax mixtures. Journal of Materials Science., 35(4), 1009-1016.
  • [14] Bergstrom, L. ve diğerleri., (1997). Colloidal processing of a very fine BaTiO3 powder—effect of particle interactions on the suspension properties, consolidation, and sintering behavior. Journal of the American Ceramic Society., 80(2), 291-300.
  • [15] M. Mooney., (1951). The viscosity of a concentrated suspension of spherical particles. Journal of Colloid Science., 6(2), 162-170.
  • [16] Tseng W.J.ve Li, S.Y. (2002). Rheology of colloidal BaTiO3 suspension with ammonium polyacrylate as a dispersant. Materials Science and Engineering: A., 333(1), 314-319.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Seval Genç 0000-0002-0937-942X

Publication Date September 1, 2019
Published in Issue Year 2019

Cite

APA Genç, S. (2019). MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ. International Journal of Advances in Engineering and Pure Sciences, 31(3), 232-237. https://doi.org/10.7240/jeps.521082
AMA Genç S. MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ. JEPS. September 2019;31(3):232-237. doi:10.7240/jeps.521082
Chicago Genç, Seval. “MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ”. International Journal of Advances in Engineering and Pure Sciences 31, no. 3 (September 2019): 232-37. https://doi.org/10.7240/jeps.521082.
EndNote Genç S (September 1, 2019) MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ. International Journal of Advances in Engineering and Pure Sciences 31 3 232–237.
IEEE S. Genç, “MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ”, JEPS, vol. 31, no. 3, pp. 232–237, 2019, doi: 10.7240/jeps.521082.
ISNAD Genç, Seval. “MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ”. International Journal of Advances in Engineering and Pure Sciences 31/3 (September 2019), 232-237. https://doi.org/10.7240/jeps.521082.
JAMA Genç S. MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ. JEPS. 2019;31:232–237.
MLA Genç, Seval. “MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ”. International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 3, 2019, pp. 232-7, doi:10.7240/jeps.521082.
Vancouver Genç S. MANYETOREOLOJİK (MR) AKIŞKANLARIN KAPALI DURUM VİSKOZİTESİNİN İNCELENMESİ. JEPS. 2019;31(3):232-7.