Research Article
BibTex RIS Cite

Structure, microstructure and optical properties of Tb doped ZnO nanorods

Year 2020, , 185 - 191, 30.06.2020
https://doi.org/10.7240/jeps.627298

Abstract

References

  • [1] Boyraz, C., Doğan, N. Arda, L. (2017). Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceramics International. 43, 15986-15991.
  • [2] S. Kaya, D. Akcan, O. Ozturk, L. Arda, “Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique”, Ceramic Inter., 44(9) (2018) 10306-10314.
  • [3] D. Akcan, A. Gungor, L. Arda, “Structural and optical properties of Na-doped ZnO films”, Journal of Molecular Structure, 1161 (2018) 299-305.
  • [4] Arda, L. Dogan, N. Boyraz, C. (2018). Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J. Supercond. Nov. Mag. 31(2), 365-371.
  • [5] Boyraz, C. Yesilbas, B. Arda, L. (2017). The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. Journ. of Supercon. Nov. Mag. 30(6), 1691–1698.
  • [6] P. A. Rodnyi and I. V. Khodyuk,” Optical and Luminescence Properties of Zinc Oxide”, Optics and Spectroscopy, Vol. 111 No 5 (2011) 776 - 785.
  • [7] A. Hassan, Y. Jin, M. Irfan, and Y. Jiang, “Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films”, AIP Advances 8, 035212 (2018); DOI: 10.1063/1.5020830
  • [8] H. J. Xiang, J. Yang, J. G. Hou, and Q. Zhu, “Piezoelectricity in ZnO nanowires: A first-principles study”, Applied Physics Letters, 89, 223111 (2006).
  • [9] N. H. Nickel and E. Terukov, Zinc Oxide—A Material For Micro- and OptoelectronicApplications (Springer, Dordrecht, 2005).[10] M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure”, Applied Physics Letters, 86, 103105 (2005).
  • [11] H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering”, Materials Letters, 165, 123–126 (2016).
  • [12] E. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide (Springer, Berlin, 2008).
  • [13] D. C. Reynolds, D. C. Look, and B. Jogai, “Fine Structure on the Green Band in ZnO”, J. Appl. Phys., 89, 6189 (2001).
  • [14] H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin., 131(6), 1189–1192 (2011).
  • [15] I. Yun, Photodiodes: From Fundamentals to Applications (InTech, 2012).
  • [16] K. Yim, J. Lee, D. Lee, M. Lee, E. Cho, H. S. Lee, Ho-Hyun Nahm, and S. Han “Property Database for Single-Element Doping in ZnO Obtained by Automated First-Principles Calculations”, Scientific Reports, 7 (2017) 40907.
  • [17] Blasse, G. Handbook on the physics and chemistry of the rare earth, North-Holland, Amsterdam, vol.4; 1979.
  • [18] M. İ. Nazarov, D. Y. Noh, “Rare earth double activated phosphors for different applications”, J. Rare Earths, 2010; 28, 1-11.
  • [19] Y. Gogotsi, Nanomaterials handbook, Routledge Publishers, USA, 2006.
  • [20] Arda, L. (2019). The effects of Tb doped ZnO nanorod: An EPR study. Jour. of Mag. and Mag. Mat. 475, 493-501.
  • [21] S. Maensiri, P. Laokul, V. Promarak, “Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone)”, Journal of Crystal Growth, 289 (2006) 102-106. [22] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, “Influence of Mn doping on the microstructure and optical property of ZnO”, Materials Science in Semiconductor Processing, 11 (2008) 6-12.[23] K. Anna, P. Nina, K. Yuri, M. Meinhard, Z. Werner, G. Aharon, “Coating zinc oxide submicron crystals on poly(methyl methacrylate) chips and spheres via ultrasound irradiation”, Ultrasonics Sonochemistry, 15 (2008) 839–845.
  • [24] H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Cui, “Sol-Gel preparation of transparent zinc oxide films with highly preferential crystal orientation”, Vacuum 77 (2004) 57–62.
  • [25] R. Wahab, S.G. Ansari, Y.-S. Kim, H.-K. Seo, H.-S. Shin, “Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method”, Appl. Surf. Sci., 253 (2007) 7622–7626.
  • [26] Partha P. Pal, Jairam Manam, “Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods”, Materials Science and Engineering B,178 (2013) 400–408.
  • [10] M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure”, Applied Physics Letters, 86, 103105 (2005).
  • [22] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, “Influence of Mn doping on the microstructure and optical property of ZnO”, Materials Science in Semiconductor Processing, 11 (2008) 6-12.
  • [23] K. Anna, P. Nina, K. Yuri, M. Meinhard, Z. Werner, G. Aharon, “Coating zinc oxide submicron crystals on poly(methyl methacrylate) chips and spheres via ultrasound irradiation”, Ultrasonics Sonochemistry, 15 (2008) 839–845.

Tb katkılı ZnO nanoçubukların yapı, mikroyapı ve optik özellikleri

Year 2020, , 185 - 191, 30.06.2020
https://doi.org/10.7240/jeps.627298

Abstract

Nadir
toprak katkılı Çinko Oksitler (ZnO), özellikle yüksek algılama ve yüksek hızlı
optik iletişim için fotodetektör teknolojisinde önemli malzemelerdir. Burada,
hidrotermal yöntemle sentezlenen Terbium katkılı ZnO'nun önemli fiziksel
özellikleri konsantrasyon bağımlılıklarına göre analiz edilmiştir. Nano
çubukların yapısal davranışları, X-ışını kırınımı (XRD) tekniği ile tanımlanmış
ve Zn1-xTbxO örneklerinin ikincil fazı olmayan altıgen
Wurtzite yapı olduğu tespit edilmiştir. Yapısal davranışların sonuçları,
Rietveld analiziylede kanıtlanmıştır. Tb elementinin Zn1-xTbxO
bileşimindeki etkisi, kafes parametreleri ve hücre hacimleri hesaplanarak
ortaya çıkarıldı. Yapıyı daha iyi tanımlamak için hesaplama yoluyla mikroyapısal
parametreler elde edilmiştir. Taramalı Elektron Mikroskobu görüntüleri rastgele
topaklanmayı ortaya çıkarmıştır. Zn1-xTbxO setindeki az
miktardaki Tb artışına bağlı olarak, nano çubuk setleri x = 0' dan x = 0,05'e
kadar olan artışlarla nano çubuk setlerin oldukça yakın element kompozisyon
sonuçları elde edildi. (F (R) * hʋ) ʋ / h'ye karşılık hʋ'ye göre, Zn1-xTbxO
yapılarının bant aralığı enerjileri belirlendi ve yapılardaki artan Tb dopantına
bağlı Eg enerjilerinin değişimi tartışıldı.

References

  • [1] Boyraz, C., Doğan, N. Arda, L. (2017). Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceramics International. 43, 15986-15991.
  • [2] S. Kaya, D. Akcan, O. Ozturk, L. Arda, “Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique”, Ceramic Inter., 44(9) (2018) 10306-10314.
  • [3] D. Akcan, A. Gungor, L. Arda, “Structural and optical properties of Na-doped ZnO films”, Journal of Molecular Structure, 1161 (2018) 299-305.
  • [4] Arda, L. Dogan, N. Boyraz, C. (2018). Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J. Supercond. Nov. Mag. 31(2), 365-371.
  • [5] Boyraz, C. Yesilbas, B. Arda, L. (2017). The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. Journ. of Supercon. Nov. Mag. 30(6), 1691–1698.
  • [6] P. A. Rodnyi and I. V. Khodyuk,” Optical and Luminescence Properties of Zinc Oxide”, Optics and Spectroscopy, Vol. 111 No 5 (2011) 776 - 785.
  • [7] A. Hassan, Y. Jin, M. Irfan, and Y. Jiang, “Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films”, AIP Advances 8, 035212 (2018); DOI: 10.1063/1.5020830
  • [8] H. J. Xiang, J. Yang, J. G. Hou, and Q. Zhu, “Piezoelectricity in ZnO nanowires: A first-principles study”, Applied Physics Letters, 89, 223111 (2006).
  • [9] N. H. Nickel and E. Terukov, Zinc Oxide—A Material For Micro- and OptoelectronicApplications (Springer, Dordrecht, 2005).[10] M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure”, Applied Physics Letters, 86, 103105 (2005).
  • [11] H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering”, Materials Letters, 165, 123–126 (2016).
  • [12] E. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide (Springer, Berlin, 2008).
  • [13] D. C. Reynolds, D. C. Look, and B. Jogai, “Fine Structure on the Green Band in ZnO”, J. Appl. Phys., 89, 6189 (2001).
  • [14] H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin., 131(6), 1189–1192 (2011).
  • [15] I. Yun, Photodiodes: From Fundamentals to Applications (InTech, 2012).
  • [16] K. Yim, J. Lee, D. Lee, M. Lee, E. Cho, H. S. Lee, Ho-Hyun Nahm, and S. Han “Property Database for Single-Element Doping in ZnO Obtained by Automated First-Principles Calculations”, Scientific Reports, 7 (2017) 40907.
  • [17] Blasse, G. Handbook on the physics and chemistry of the rare earth, North-Holland, Amsterdam, vol.4; 1979.
  • [18] M. İ. Nazarov, D. Y. Noh, “Rare earth double activated phosphors for different applications”, J. Rare Earths, 2010; 28, 1-11.
  • [19] Y. Gogotsi, Nanomaterials handbook, Routledge Publishers, USA, 2006.
  • [20] Arda, L. (2019). The effects of Tb doped ZnO nanorod: An EPR study. Jour. of Mag. and Mag. Mat. 475, 493-501.
  • [21] S. Maensiri, P. Laokul, V. Promarak, “Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone)”, Journal of Crystal Growth, 289 (2006) 102-106. [22] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, “Influence of Mn doping on the microstructure and optical property of ZnO”, Materials Science in Semiconductor Processing, 11 (2008) 6-12.[23] K. Anna, P. Nina, K. Yuri, M. Meinhard, Z. Werner, G. Aharon, “Coating zinc oxide submicron crystals on poly(methyl methacrylate) chips and spheres via ultrasound irradiation”, Ultrasonics Sonochemistry, 15 (2008) 839–845.
  • [24] H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Cui, “Sol-Gel preparation of transparent zinc oxide films with highly preferential crystal orientation”, Vacuum 77 (2004) 57–62.
  • [25] R. Wahab, S.G. Ansari, Y.-S. Kim, H.-K. Seo, H.-S. Shin, “Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method”, Appl. Surf. Sci., 253 (2007) 7622–7626.
  • [26] Partha P. Pal, Jairam Manam, “Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods”, Materials Science and Engineering B,178 (2013) 400–408.
  • [10] M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure”, Applied Physics Letters, 86, 103105 (2005).
  • [22] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, “Influence of Mn doping on the microstructure and optical property of ZnO”, Materials Science in Semiconductor Processing, 11 (2008) 6-12.
  • [23] K. Anna, P. Nina, K. Yuri, M. Meinhard, Z. Werner, G. Aharon, “Coating zinc oxide submicron crystals on poly(methyl methacrylate) chips and spheres via ultrasound irradiation”, Ultrasonics Sonochemistry, 15 (2008) 839–845.
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Adil Güler 0000-0002-5345-8731

Publication Date June 30, 2020
Published in Issue Year 2020

Cite

APA Güler, A. (2020). Structure, microstructure and optical properties of Tb doped ZnO nanorods. International Journal of Advances in Engineering and Pure Sciences, 32(2), 185-191. https://doi.org/10.7240/jeps.627298
AMA Güler A. Structure, microstructure and optical properties of Tb doped ZnO nanorods. JEPS. June 2020;32(2):185-191. doi:10.7240/jeps.627298
Chicago Güler, Adil. “Structure, Microstructure and Optical Properties of Tb Doped ZnO Nanorods”. International Journal of Advances in Engineering and Pure Sciences 32, no. 2 (June 2020): 185-91. https://doi.org/10.7240/jeps.627298.
EndNote Güler A (June 1, 2020) Structure, microstructure and optical properties of Tb doped ZnO nanorods. International Journal of Advances in Engineering and Pure Sciences 32 2 185–191.
IEEE A. Güler, “Structure, microstructure and optical properties of Tb doped ZnO nanorods”, JEPS, vol. 32, no. 2, pp. 185–191, 2020, doi: 10.7240/jeps.627298.
ISNAD Güler, Adil. “Structure, Microstructure and Optical Properties of Tb Doped ZnO Nanorods”. International Journal of Advances in Engineering and Pure Sciences 32/2 (June 2020), 185-191. https://doi.org/10.7240/jeps.627298.
JAMA Güler A. Structure, microstructure and optical properties of Tb doped ZnO nanorods. JEPS. 2020;32:185–191.
MLA Güler, Adil. “Structure, Microstructure and Optical Properties of Tb Doped ZnO Nanorods”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 2, 2020, pp. 185-91, doi:10.7240/jeps.627298.
Vancouver Güler A. Structure, microstructure and optical properties of Tb doped ZnO nanorods. JEPS. 2020;32(2):185-91.