Research Article
BibTex RIS Cite

EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması

Year 2021, , 171 - 179, 31.03.2021
https://doi.org/10.7240/jeps.729478

Abstract

Elektroensefalografi beyindeki elektriksel akımın ölçülmesi ile elde edilen sinyallerdir. Bu sinyallerin sınıflandırılması özellikle beyin sinyalleri ile ilgili rahatsızlıkların teşhis, tanı ve tedavisine katkı sağladığı için önemlidir. Ancak bu sinyallerden anlamlı sonuçlar elde edebilmek için öncelikle veri temizleme, öznitelik çıkarma ve öznitelik seçme yöntemleri kullanılmıştır. Daha sonra bu yöntemler sınıflandırma başarısına katkıları açısından kıyaslanmıştır. İlk olarak filtrelenen veriden Ayrık Dalgacık Dönüşümü metodu ile istatistiksel özellikler çıkarılmış, ardından Diferansiyel Evrim Algoritması kullanılarak en iyi sınıflandırma sonucunu veren öznitelik alt kümesi seçilmiştir. Seçilen özniteliklere sahip veri kümesinin sınıflandırma başarısı Destek Vektör Makineleri ile test edilmiştir. Kullanılan yöntem ile bazı sınıfların ayrılmasında benzer çalışmalardan daha iyi sonuçlar elde edilmiştir.

References

  • [1] Andrzejak RG, L. K. (tarih yok). BONN UNIVERCITY EEG time series download page. 10 2, 2019 tarihinde http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3 adresinden alındı
  • [2] LASEFR, Z., AYYALASOMAYAJULA, S. S., & ELLEITHY, K. (2017). Epilepsy seizure detection using EEG signals. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (pp. 162-167),IEEE. IEEE.
  • [3] Md. Mamun or Rashid, M. A. (2017). Epileptic Seizure Classification using Statistical Features of EEG Signal. Bazar, Bangladesh: IEEE.
  • [4] AHMADI, A., SHALCHYAN, V., & DALIRI, M. R. (2017). A New Method for Epileptic Seizure Classification in EEG Using Adapted Wavelet Packets. İstanbul, Turkey: IEEE.
  • [5] Physio Bank. (tarih yok). 11 12, 2018 tarihinde (http://physi onet.org/cgi-bin/atm/ATM adresinden alındı
  • [6] RAMAKRISHNAN, S., & MURUGAVEL, A. M. (2018). Epileptic seizure detection using fuzzy rules based sub band specific features and layered multi class SVM. Pattern Analysis and Applications, 16.
  • [7] AHAMMAD, N., FATHIMA, T., & JOSEPH, P. (2014). Detection of epileptic seizure event and onset using EEG. BioMed research international 2014, 2014(7).
  • [8] SALEM, O., NASEEM, A., & MEHAOUA, A. (2014). Epileptic Seizure Detection From EEG Signal using Discrete Wavelet Transform and Ant Colony classifier Communications (ICC). IEEE International Conference on. IEEE, 2014, 3529-3534.
  • [9] MAHAJAN, K., VARGANTWAR, M. R., & RAJPUT, S. M. (2011). Classification of EEG using PCA, ICA and Neural Network. International Journal of Engineering and Advanced Technology, 1(80-83).
  • [10] SIULY, S., LI, Y., & ZHANG, Y. (2016, 11). EEG signal analysis and classification. IEEE Transactions on Neural Systems and Rehabilitaiton Engineering, s. 141-4.
  • [11] Abdulhamit, S. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, s. Cilt 4, 1084-1093.
  • [12] OJALA, T., PIETIKÄINEN, M., & MÄENPÄÄ, T. (2000). Gray scale and rotation invariant texture classification with local binary patterns. European Conference on Computer Vision. Springer, Berlin, Heidelberg, s. 404-420.
  • [13] BURÇIN, K., & VASIF, N. V. (2011). Down syndrome recognition using local binary patterns and statistical evaluation of the system. Expert Systems with Applications. 38 2011, Cilt 7, s. 8690-8695.
  • [14] PRICE, K., STORN, R. M., & LAMPINEN, J. A. (2006). Differential Evolution A Practical Approach to Global Optimization. Springer Science & Business Media.
Year 2021, , 171 - 179, 31.03.2021
https://doi.org/10.7240/jeps.729478

Abstract

References

  • [1] Andrzejak RG, L. K. (tarih yok). BONN UNIVERCITY EEG time series download page. 10 2, 2019 tarihinde http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3 adresinden alındı
  • [2] LASEFR, Z., AYYALASOMAYAJULA, S. S., & ELLEITHY, K. (2017). Epilepsy seizure detection using EEG signals. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (pp. 162-167),IEEE. IEEE.
  • [3] Md. Mamun or Rashid, M. A. (2017). Epileptic Seizure Classification using Statistical Features of EEG Signal. Bazar, Bangladesh: IEEE.
  • [4] AHMADI, A., SHALCHYAN, V., & DALIRI, M. R. (2017). A New Method for Epileptic Seizure Classification in EEG Using Adapted Wavelet Packets. İstanbul, Turkey: IEEE.
  • [5] Physio Bank. (tarih yok). 11 12, 2018 tarihinde (http://physi onet.org/cgi-bin/atm/ATM adresinden alındı
  • [6] RAMAKRISHNAN, S., & MURUGAVEL, A. M. (2018). Epileptic seizure detection using fuzzy rules based sub band specific features and layered multi class SVM. Pattern Analysis and Applications, 16.
  • [7] AHAMMAD, N., FATHIMA, T., & JOSEPH, P. (2014). Detection of epileptic seizure event and onset using EEG. BioMed research international 2014, 2014(7).
  • [8] SALEM, O., NASEEM, A., & MEHAOUA, A. (2014). Epileptic Seizure Detection From EEG Signal using Discrete Wavelet Transform and Ant Colony classifier Communications (ICC). IEEE International Conference on. IEEE, 2014, 3529-3534.
  • [9] MAHAJAN, K., VARGANTWAR, M. R., & RAJPUT, S. M. (2011). Classification of EEG using PCA, ICA and Neural Network. International Journal of Engineering and Advanced Technology, 1(80-83).
  • [10] SIULY, S., LI, Y., & ZHANG, Y. (2016, 11). EEG signal analysis and classification. IEEE Transactions on Neural Systems and Rehabilitaiton Engineering, s. 141-4.
  • [11] Abdulhamit, S. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, s. Cilt 4, 1084-1093.
  • [12] OJALA, T., PIETIKÄINEN, M., & MÄENPÄÄ, T. (2000). Gray scale and rotation invariant texture classification with local binary patterns. European Conference on Computer Vision. Springer, Berlin, Heidelberg, s. 404-420.
  • [13] BURÇIN, K., & VASIF, N. V. (2011). Down syndrome recognition using local binary patterns and statistical evaluation of the system. Expert Systems with Applications. 38 2011, Cilt 7, s. 8690-8695.
  • [14] PRICE, K., STORN, R. M., & LAMPINEN, J. A. (2006). Differential Evolution A Practical Approach to Global Optimization. Springer Science & Business Media.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ferda Abbasoğlu 0000-0003-2337-4673

Ayla Gülcü 0000-0003-3258-8681

Ulvi Başpınar 0000-0002-3359-9713

Publication Date March 31, 2021
Published in Issue Year 2021

Cite

APA Abbasoğlu, F., Gülcü, A., & Başpınar, U. (2021). EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması. International Journal of Advances in Engineering and Pure Sciences, 33(2), 171-179. https://doi.org/10.7240/jeps.729478
AMA Abbasoğlu F, Gülcü A, Başpınar U. EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması. JEPS. March 2021;33(2):171-179. doi:10.7240/jeps.729478
Chicago Abbasoğlu, Ferda, Ayla Gülcü, and Ulvi Başpınar. “EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması”. International Journal of Advances in Engineering and Pure Sciences 33, no. 2 (March 2021): 171-79. https://doi.org/10.7240/jeps.729478.
EndNote Abbasoğlu F, Gülcü A, Başpınar U (March 1, 2021) EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması. International Journal of Advances in Engineering and Pure Sciences 33 2 171–179.
IEEE F. Abbasoğlu, A. Gülcü, and U. Başpınar, “EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması”, JEPS, vol. 33, no. 2, pp. 171–179, 2021, doi: 10.7240/jeps.729478.
ISNAD Abbasoğlu, Ferda et al. “EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması”. International Journal of Advances in Engineering and Pure Sciences 33/2 (March 2021), 171-179. https://doi.org/10.7240/jeps.729478.
JAMA Abbasoğlu F, Gülcü A, Başpınar U. EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması. JEPS. 2021;33:171–179.
MLA Abbasoğlu, Ferda et al. “EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 2, 2021, pp. 171-9, doi:10.7240/jeps.729478.
Vancouver Abbasoğlu F, Gülcü A, Başpınar U. EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması. JEPS. 2021;33(2):171-9.