Review
BibTex RIS Cite
Year 2020, Volume: 32 Issue: 1, 15 - 32, 31.03.2020
https://doi.org/10.7240/jeps.571001

Abstract

References

  • [1] Tatli, H., & Türkeş, M. (2014). Climatological evaluation of Haines forest fire weather index over the Mediterranean Basin. Meteorological Applications, 21(3), 545-552. [2] Werth, J., & Werth, P. (1998). Haines Index climatology for the western United States. Fire management notes (USA).
  • [3] Jenkins, M. A. (2002). An examination of the sensitivity of numerically simulated wildfires to low-level atmospheric stability and moisture, and the consequences for the Haines Index. International Journal of Wildland Fire, 11(4), 213-232.
  • [4] McCaw, L., Marchetti, P., Elliott, G., & Reader, G. (2007). Bushfire weather climatology of the Haines Index in southwestern Australia. Australian Meteorological Magazine, 56(2).
  • [5] Winkler, J. A., Potter, B. E., Wilhelm, D. F., Shadbolt, R. P., Piromsopa, K., & Bian, X. (2007). Climatological and statistical characteristics of the Haines Index for North America. International Journal of Wildland Fire, 16(2), 139-152.
  • [6] Trouet, V., Taylor, A. H., Carleton, A. M., & Skinner, C. N. (2009). Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theoretical and Applied Climatology, 95(3-4), 349-360.
  • [7] Peace, M., McCaw, L., & Mills, G. (2012). Meteorological dynamics in a fire environment; a case study of the Layman prescribed burn in Western Australia. Australian Meteorological and Oceanographic Journal, 62(3), 127.
  • [8] Barberà, M. J., Niclòs, R., Estrela, M. J., & Valiente, J. A. (2015). Climatology of the stability and humidity terms in the Haines Index to improve the estimate of forest fire risk in the Western Mediterranean Basin (Valencia region, Spain). International Journal of Climatology, 35(7), 1212-1223.
  • [9] Cardil, A., Molina, D. M., Ramirez, J., & Vega-García, C. (2013). Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain) from 1978 to 2010. Natural Hazards and Earth System Sciences, 13(5), 1393-1399.
  • [10] Johnson EA, Miyanishi K. (2001). Forest Fires: Behavior and Ecological Effects. Academic Press: San Diego, CA.
  • [11] Ruffault, J., Moron, V., Trigo, R. M., & Curt, T. (2017). Daily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind‐driven fire regime. International Journal of Climatology, 37(1), 524-533.
  • [12] Türkeş, M., Tatlı, H., Altan, G., Öztürk, M. Z. (2011a). Analysis of forest fires for the year of 2010 in Çanakkale and Muğla with the Keetch-Byram drought index. In: Proceedings of the National Geographical Congress with International Participitation (CD-R), ISBN 978-975-6686-04-1, 7-10 September 2011, Türk Coğrafya Kurumu – İstanbul University.
  • [13] Altan, G., Türkeş, M., Tatlı, H. (2011). Çanakkale ve Muğla 2009 yılı orman yangınlarının Keetch-Byram Kuraklık İndisi ile klimatolojik ve meteorolojik analizi. In: 5th Atmospheric Science Symposium Proceedings Book: 263-274. Istanbul Technical University, 27-29 April 2011, Istanbul. Turkey.
  • [14] Altan, G. (2011). Muğla ve Çanakkale İllerinde 2000-2008 döneminde gerçekleşen büyük orman yangınlarının klimatolojik ve meteorolojik analizi. Çanakkale Onsekiz Mart Üniversitesi, Sosyal Bilimler Enstitüsü, Yayımlanmamış Yüksek Lisans Tezi.
  • [15] Yamak, Ç. (2006). Investigation over a national meteorological fire danger approach for Turkey with geographic information systems. A Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Techinical University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geodetic and Geographic Information Technologies. 142 p.[16] Pausas, J. G., & Vallejo, V. R. (1999). The role of fire in European Mediterranean ecosystems. In Remote sensing of large wildfires (pp. 3-16). Springer, Berlin, Heidelberg. [17] Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic change, 63(3), 337-350. [18] Urbieta IR, Zavala G, Bedia J, Gutie´rrez JM, San Miguel-Ayanz J, Camia A, Keeley JE, Moreno JM. (2015). Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 10(11), 114013.
  • [19] Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International journal of wildland fire, 18(5), 483-507. [20] Lagerquist, R., Flannigan, M. D., Wang, X., & Marshall, G. A. (2017). Automated prediction of extreme fire weather from synoptic patterns in northern Alberta, Canada. Canadian Journal of Forest Research, 47(9), 1175-1183.
  • [21] Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18).
  • [22] Wang, X., Thompson, D. K., Marshall, G. A., Tymstra, C., Carr, R., & Flannigan, M. D. (2015). Increasing frequency of extreme fire weather in Canada with climate change. Climatic Change, 130(4), 573-586.
  • [23] Mhawej, M., Faour, G., Abdallah, C., & Adjizian-Gerard, J. (2016). Towards an establishment of a wildfire risk system in a Mediterranean country. Ecological informatics, 32, 167-184.
  • [24] Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21 st century. Mitigation and adaptation strategies for global change, 11(4), 847-859.
  • [25] Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473.
  • [26] Türkes¸ M. (2016). Genel Klimatoloji: Atmosfer, Hava ve İklimin Temelleri. İstanbul, Türkiye: Kriter Yayınevi.
  • [27] Türkeş, M. (2010). Klimatoloji ve meteoroloji. Kriter Yayınevi.
  • [28] Zittis, G., & Hadjinicolaou, P. (2017). The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA‐CORDEX domain. International Journal of Climatology, 37(10), 3847-3862. [29] Schroter, D.; Cramer, W.; Leemans, R.; Prentice, I. C.; Araujo, M. B.; Arnell, N. W.; Bondeau, A.; Bugmann, H.; Carter, T. R.; Gracia, C. A.; de la Vega-Leinert, A. C.; Erhard, M.; Ewert, F.; Glendining, M.; House, J. I.; Kankaanpaa, S.; Klein, R. J. T.; Lavorel, S.; Lindner, M.; Metzger, M. J.; Meyer, J.; Mitchell, T. D.; Reginster, I.; Rounsevell, M.; Sabate, S.; Sitch, S.; Smith, B.; Smith, J.; Smith, P.; Sykes, M. T.; Thonicke, K.; Thuiller, W.; Tuck, G.; Zaehle, S.; Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752): 1333-1337.
  • [30] Westerling, A. L., Hidalgo H. G., Cayan D. R., and Swetnam T. W. (2006). Warming and earlier spring increase western U. S. forest wildfire activity. Science 313(5789):940–943.
  • [31] Bedia J., Golding N., Casanueva A., Iturbide M., Buontempo C., & Gutiérrez J. M. (2017). Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe. Climate Services.
  • [32] Abatzoglou, John T., & Kolden, Crystal A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire 22(7):1003-1020.
  • [33] Blackwell, B., M.C. Feller, and R. Trowbridge. (1992). Conver- sionof dense lodge pole pine stands in west-central British Columbia into young lodge pole pine plantations using prescribed fire. 1. Biomass consumption during burning treatments. Canadian Journal of Forest Research 22: 572- 581.
  • [34] Valette, J. C., Gomendy, V., Maréchal, J., Houssard, C., & Gillon, D. (1994). Heat-transfer in the soil during very low-intensity experimental fires-the role of duff and soil-moisture content. International Journal of Wildland Fire, 4(4), 225-237.
  • [35] Dimitrakopoulos AP, Mitsopoulos ID, & Gatoulas K. (2010). Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel type. International Journal of Wildland Fire 19: 29–34.
  • [36] Pausas, J. G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic change, 110(1-2), 215-226.
  • [37] Turco M, Llasat M-C, von Hardenberg J, & Provenzale A (2014). Climate change impacts on wildfires in a Mediterranean environment. Climatic Change125:369–380.
  • [38] Cardil, A., Eastaugh, C. S., & Molina, D. M. (2015). Extreme temperature conditions and wildland fires in Spain. Theoretical and applied climatology, 122(1-2), 219-22.
  • [39] Marcos, R., Turco, M., Bedía, J., Llasat, M. C., & Provenzale, A. (2015). Seasonal predictability of summer fires in a Mediterranean environment. International journal of wildland fire, 24(8), 1076-1084.
  • [40] Kum G., & Sönmez M.E. (2016). Determination of Meteorological Forest Fire Risks in Mediterranean Climate of Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(2), 181-192.
  • [41] Türkeş, M., & Altan, G. (2012). Analysis of the year 2008 fires in the forest lands of the Muğla Regional Forest Service by using drought indices. Journal of Human Sciences, 9(1), 912-931.
  • [42] Sarris, D., Christopoulou, A., Angelonidi, E., Koutsias, N., Fulé, P. Z., & Arianoutsou, M. (2014). Increasing extremes of heat and drought associated with recent severe wildfires in southern Greece. Regional environmental change, 14(3), 1257-1268.
  • [43] Bedia J, Herrera S, Gutiérrez J M, Benali A, Brands S, Mota B and Moreno J M. (2015). Global patterns in the sensitivity of burned area to fire–weather: implications for climate change Agric. Forest Meteorol.214-215 369–7.
  • [44] Knorr W., Dentener F., Hantson S., Jiang L., Klimont Z., & Arneth A. (2016). Air quality impacts of European wildfire emissions in a changing climate.
  • [45] Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on California fire regimes. Ecological applications, 17(5), 1388-1402.
  • [46] Ager, A. A., Preisler, H. K., Arca, B., Spano, D., & Salis, M. (2014). Wildfire risk estimation in the Mediterranean area. Environmetrics, 25(6), 384-396.
  • [47] Haines, D. A. (1989). A lower atmosphere severity index for wildlife fires. National Weather Digest, 13, 23-27.
  • [48] Werth, P., & Ochoa, R. (1993). The evaluation of Idaho wildfire growth using the Haines Index. Weather and Forecasting, 8(2), 223-234.
  • [49] Beverly, J. L., & Wotton, B. M. (2007). Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire, 16(2), 161-173.
  • [50] Dimitrakopoulos, A. P., Bemmerzouk, A. M., & Mitsopoulos, I. D. (2011). Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorological Applications, 18(1), 83-93.
  • [51] Chelli S., Maponi P., Campetella G., Monteverde P., Foglia M., Paris E., Lolis A., & Panagopoulos T. (2015). Adaptation of the Canadian fire weather index to Mediterranean forests. Natural Hazards, 75(2), 1795-1810.
  • [52] Carvalho, A., Flannigan, M. D., Logan, K., Miranda, A. I., & Borrego, C. (2008). Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. International Journal of Wildland Fire, 17(3), 328-338.
  • [53] Van Wagner, C. E., & Forest, P. (1987). Development and structure of the canadian forest fireweather index system. In Can. For. Serv., Forestry Tech. Rep.[54] Canadian Fire Weather Index System (FWI system), https://www.frames.gov/files/6014/1576/1411/FWI-history.pdf.
  • [55] Good, P., Moriondo, M., Giannakopoulos, C., & Bindi, M. (2008). The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. International Journal of Wildland Fire, 17(2), 155-165.
  • [56] Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control. Res. Pap. SE-38. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 35 p., 38.
  • [57] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009a). A simple index for assessing fire danger rating. Environmental Modelling & Software, 24(6), 764-774.
  • [58] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009b). A simple index for assessing fuel moisture content. Environmental Modelling & Software, 24(5), 637-646.
  • [59] Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645-1658.
  • [60] Satir, O., Berberoglu, S., & Cilek, A. (2016). Modelling long-term forest fire risk using fire weather index under climate change in Turkey. Applied Ecology and Environmental Research, 14(4), 537-551.
  • [61] Sirca, C., Salis, M., Arca, B., Duce, P., & Spano, D. (2018). Assessing the performance of fire danger indexes in a Mediterranean area. iForest-Biogeosciences and Forestry, 11(5), 563.
  • [62] Noble, I. R., Gill, A. M., & Bary, G. A. V. (1980). McArthur's fire‐danger meters expressed as equations. Australian Journal of Ecology, 5(2), 201-203.
  • [63] Pérez-Sánchez, J., Senent-Aparicio, J., Díaz-Palmero, J. M., & de Dios Cabezas-Cerezo, J. (2017). A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain). Science of the Total Environment, 590, 761-774.
  • [64] San-Miguel-Ayanz, J., Carlson, J. D., Alexander, M., Tolhurst, K., Morgan, G., Sneeuwjagt, R., & Dudley, M. (2003). Current methods to assess fire danger potential. In Wildland fire danger estimation and mapping: The role of remote sensing data (pp. 21-61).
  • [65] Sirca, C., Spano, D., Duce, P., Delogu, G., Cicalò, G. O., & Viegas, D. X. (2007). Performance of a newly developed integrated fire rating index in Sardinia, Italy. In Proceedings of the 4th International WildLand FireConference. Seville, Spain(pp. 13-17).
  • [66] Goodrick, S. L. (2002). Modification of the Fosberg fire weather index to include drought. International Journal of Wildland Fire, 11(4), 205-211.
  • [67] Ganatsas, P., Antonis, M., & Marianthi, T. (2011). Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agricultural and forest meteorology, 151(2), 241-250.
  • [68] Venevsky, S., Thonicke, K., Sitch, S., & Cramer, W. (2002). Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Global Change Biology, 8(10), 984–998. doi:10.1046/j.1365-2486.2002. 00528.x.
  • [69] Angström, A. (1949). Swedish Meteorological Research 1939-1948. Tellus, 1(1), 60–64. doi:10.1111/j.2153-3490. 1949.tb01930.x.
  • [70] Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. (2014). Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Policy, 37, 11-22.
  • [71] Türkeş, M., & Altan, G. (2012). Çanakkale’nin 2008 yılı büyük orman yangınlarının meteorolojik ve hidroklimatolojik analizi. Coğrafi Bilimler Dergisi, 10(2), 195-218.
  • [72] Wang, X., Wotton, B. M., Cantin, A. S., Parisien, M. A., Anderson, K., Moore, B., & Flannigan, M. D. (2017). cffdrs: an R package for the Canadian forest fire danger rating system. Ecological Processes, 6(1), 5.
  • [73] Lawson, B. D., & Armitage, O. B. (2008). Weather guide for the Canadian forest fire danger rating system.

İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi

Year 2020, Volume: 32 Issue: 1, 15 - 32, 31.03.2020
https://doi.org/10.7240/jeps.571001

Abstract



 İklim değişikliği ile birlikte son yıllarda Akdeniz Havzasında orman yangınlarının sayısında ciddi bir artış gözlenmiştir. Gerçekleşen bu yangınlar ormanlara doğal felaketlerden daha çok zarar vermektedir. Çıkan yangınların bir kısmı artan kurak hava koşulları nedeniyle doğal yollardan meydana gelirken, diğer bir kısmı ise ihmal ya da kasıt sonucunda oluşan ve büyük ölçüde iklim elemanlarının (sıcaklık, yağış, rüzgâr, nem vb.) etkisiyle büyüklüğü değişen yangınlar olarak ortaya çıkmaktadır. Orman yangınlarının öngörülmesinde kuraklık ile orman yangınları arasındaki ilişkiyi ele alan farklı indisler kullanılmaktadır. Bu çalışmada, olası orman yangınlarını öngörmek amacıyla yaygın olarak kullanılan yangın indislerinden; Haines İndisi (HI), Kanada Orman Yangın Hava İndisi (FWI), Keetch-Byram Kuraklık İndisi (KBDI), F İndisi detaylı olarak, Entegre Yangın İndisi (IFI), McArthur Mark 5 (Mk5) Orman ve Mark 4 (Mk4) Otlak Yangın Tehlike İndisi (McArthur Mark 5 (Mk5)), Fosberg Yangın Hava İndisi (FFWI), Nesterov İndisi (NI) ve Angström İndisi (AI) kısaca ele alınmıştır. İklim değişikliğinin orman yangınlarına etkisiyle ilgili yapılan çalışmalar kapsamında Antalya, Çanakkale ve Muğla Orman Bölge Müdürlüklerine bağlı orman arazilerinde 2008 ve 2009 yıllarında çıkan yangınlar Kanada Orman Yangın Hava İndisi (FWI) kullanılarak incelenmiştir. Sonuçlar 2008 ve 2009 yılı yangın verileri ile tutarlılık göstermiştir ve FWI değerleri bu yıllar için yangın riskini öngörmede başarılı bulunmuştur.



 

References

  • [1] Tatli, H., & Türkeş, M. (2014). Climatological evaluation of Haines forest fire weather index over the Mediterranean Basin. Meteorological Applications, 21(3), 545-552. [2] Werth, J., & Werth, P. (1998). Haines Index climatology for the western United States. Fire management notes (USA).
  • [3] Jenkins, M. A. (2002). An examination of the sensitivity of numerically simulated wildfires to low-level atmospheric stability and moisture, and the consequences for the Haines Index. International Journal of Wildland Fire, 11(4), 213-232.
  • [4] McCaw, L., Marchetti, P., Elliott, G., & Reader, G. (2007). Bushfire weather climatology of the Haines Index in southwestern Australia. Australian Meteorological Magazine, 56(2).
  • [5] Winkler, J. A., Potter, B. E., Wilhelm, D. F., Shadbolt, R. P., Piromsopa, K., & Bian, X. (2007). Climatological and statistical characteristics of the Haines Index for North America. International Journal of Wildland Fire, 16(2), 139-152.
  • [6] Trouet, V., Taylor, A. H., Carleton, A. M., & Skinner, C. N. (2009). Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theoretical and Applied Climatology, 95(3-4), 349-360.
  • [7] Peace, M., McCaw, L., & Mills, G. (2012). Meteorological dynamics in a fire environment; a case study of the Layman prescribed burn in Western Australia. Australian Meteorological and Oceanographic Journal, 62(3), 127.
  • [8] Barberà, M. J., Niclòs, R., Estrela, M. J., & Valiente, J. A. (2015). Climatology of the stability and humidity terms in the Haines Index to improve the estimate of forest fire risk in the Western Mediterranean Basin (Valencia region, Spain). International Journal of Climatology, 35(7), 1212-1223.
  • [9] Cardil, A., Molina, D. M., Ramirez, J., & Vega-García, C. (2013). Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain) from 1978 to 2010. Natural Hazards and Earth System Sciences, 13(5), 1393-1399.
  • [10] Johnson EA, Miyanishi K. (2001). Forest Fires: Behavior and Ecological Effects. Academic Press: San Diego, CA.
  • [11] Ruffault, J., Moron, V., Trigo, R. M., & Curt, T. (2017). Daily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind‐driven fire regime. International Journal of Climatology, 37(1), 524-533.
  • [12] Türkeş, M., Tatlı, H., Altan, G., Öztürk, M. Z. (2011a). Analysis of forest fires for the year of 2010 in Çanakkale and Muğla with the Keetch-Byram drought index. In: Proceedings of the National Geographical Congress with International Participitation (CD-R), ISBN 978-975-6686-04-1, 7-10 September 2011, Türk Coğrafya Kurumu – İstanbul University.
  • [13] Altan, G., Türkeş, M., Tatlı, H. (2011). Çanakkale ve Muğla 2009 yılı orman yangınlarının Keetch-Byram Kuraklık İndisi ile klimatolojik ve meteorolojik analizi. In: 5th Atmospheric Science Symposium Proceedings Book: 263-274. Istanbul Technical University, 27-29 April 2011, Istanbul. Turkey.
  • [14] Altan, G. (2011). Muğla ve Çanakkale İllerinde 2000-2008 döneminde gerçekleşen büyük orman yangınlarının klimatolojik ve meteorolojik analizi. Çanakkale Onsekiz Mart Üniversitesi, Sosyal Bilimler Enstitüsü, Yayımlanmamış Yüksek Lisans Tezi.
  • [15] Yamak, Ç. (2006). Investigation over a national meteorological fire danger approach for Turkey with geographic information systems. A Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Techinical University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geodetic and Geographic Information Technologies. 142 p.[16] Pausas, J. G., & Vallejo, V. R. (1999). The role of fire in European Mediterranean ecosystems. In Remote sensing of large wildfires (pp. 3-16). Springer, Berlin, Heidelberg. [17] Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic change, 63(3), 337-350. [18] Urbieta IR, Zavala G, Bedia J, Gutie´rrez JM, San Miguel-Ayanz J, Camia A, Keeley JE, Moreno JM. (2015). Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 10(11), 114013.
  • [19] Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International journal of wildland fire, 18(5), 483-507. [20] Lagerquist, R., Flannigan, M. D., Wang, X., & Marshall, G. A. (2017). Automated prediction of extreme fire weather from synoptic patterns in northern Alberta, Canada. Canadian Journal of Forest Research, 47(9), 1175-1183.
  • [21] Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18).
  • [22] Wang, X., Thompson, D. K., Marshall, G. A., Tymstra, C., Carr, R., & Flannigan, M. D. (2015). Increasing frequency of extreme fire weather in Canada with climate change. Climatic Change, 130(4), 573-586.
  • [23] Mhawej, M., Faour, G., Abdallah, C., & Adjizian-Gerard, J. (2016). Towards an establishment of a wildfire risk system in a Mediterranean country. Ecological informatics, 32, 167-184.
  • [24] Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21 st century. Mitigation and adaptation strategies for global change, 11(4), 847-859.
  • [25] Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473.
  • [26] Türkes¸ M. (2016). Genel Klimatoloji: Atmosfer, Hava ve İklimin Temelleri. İstanbul, Türkiye: Kriter Yayınevi.
  • [27] Türkeş, M. (2010). Klimatoloji ve meteoroloji. Kriter Yayınevi.
  • [28] Zittis, G., & Hadjinicolaou, P. (2017). The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA‐CORDEX domain. International Journal of Climatology, 37(10), 3847-3862. [29] Schroter, D.; Cramer, W.; Leemans, R.; Prentice, I. C.; Araujo, M. B.; Arnell, N. W.; Bondeau, A.; Bugmann, H.; Carter, T. R.; Gracia, C. A.; de la Vega-Leinert, A. C.; Erhard, M.; Ewert, F.; Glendining, M.; House, J. I.; Kankaanpaa, S.; Klein, R. J. T.; Lavorel, S.; Lindner, M.; Metzger, M. J.; Meyer, J.; Mitchell, T. D.; Reginster, I.; Rounsevell, M.; Sabate, S.; Sitch, S.; Smith, B.; Smith, J.; Smith, P.; Sykes, M. T.; Thonicke, K.; Thuiller, W.; Tuck, G.; Zaehle, S.; Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752): 1333-1337.
  • [30] Westerling, A. L., Hidalgo H. G., Cayan D. R., and Swetnam T. W. (2006). Warming and earlier spring increase western U. S. forest wildfire activity. Science 313(5789):940–943.
  • [31] Bedia J., Golding N., Casanueva A., Iturbide M., Buontempo C., & Gutiérrez J. M. (2017). Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe. Climate Services.
  • [32] Abatzoglou, John T., & Kolden, Crystal A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire 22(7):1003-1020.
  • [33] Blackwell, B., M.C. Feller, and R. Trowbridge. (1992). Conver- sionof dense lodge pole pine stands in west-central British Columbia into young lodge pole pine plantations using prescribed fire. 1. Biomass consumption during burning treatments. Canadian Journal of Forest Research 22: 572- 581.
  • [34] Valette, J. C., Gomendy, V., Maréchal, J., Houssard, C., & Gillon, D. (1994). Heat-transfer in the soil during very low-intensity experimental fires-the role of duff and soil-moisture content. International Journal of Wildland Fire, 4(4), 225-237.
  • [35] Dimitrakopoulos AP, Mitsopoulos ID, & Gatoulas K. (2010). Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel type. International Journal of Wildland Fire 19: 29–34.
  • [36] Pausas, J. G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic change, 110(1-2), 215-226.
  • [37] Turco M, Llasat M-C, von Hardenberg J, & Provenzale A (2014). Climate change impacts on wildfires in a Mediterranean environment. Climatic Change125:369–380.
  • [38] Cardil, A., Eastaugh, C. S., & Molina, D. M. (2015). Extreme temperature conditions and wildland fires in Spain. Theoretical and applied climatology, 122(1-2), 219-22.
  • [39] Marcos, R., Turco, M., Bedía, J., Llasat, M. C., & Provenzale, A. (2015). Seasonal predictability of summer fires in a Mediterranean environment. International journal of wildland fire, 24(8), 1076-1084.
  • [40] Kum G., & Sönmez M.E. (2016). Determination of Meteorological Forest Fire Risks in Mediterranean Climate of Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(2), 181-192.
  • [41] Türkeş, M., & Altan, G. (2012). Analysis of the year 2008 fires in the forest lands of the Muğla Regional Forest Service by using drought indices. Journal of Human Sciences, 9(1), 912-931.
  • [42] Sarris, D., Christopoulou, A., Angelonidi, E., Koutsias, N., Fulé, P. Z., & Arianoutsou, M. (2014). Increasing extremes of heat and drought associated with recent severe wildfires in southern Greece. Regional environmental change, 14(3), 1257-1268.
  • [43] Bedia J, Herrera S, Gutiérrez J M, Benali A, Brands S, Mota B and Moreno J M. (2015). Global patterns in the sensitivity of burned area to fire–weather: implications for climate change Agric. Forest Meteorol.214-215 369–7.
  • [44] Knorr W., Dentener F., Hantson S., Jiang L., Klimont Z., & Arneth A. (2016). Air quality impacts of European wildfire emissions in a changing climate.
  • [45] Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on California fire regimes. Ecological applications, 17(5), 1388-1402.
  • [46] Ager, A. A., Preisler, H. K., Arca, B., Spano, D., & Salis, M. (2014). Wildfire risk estimation in the Mediterranean area. Environmetrics, 25(6), 384-396.
  • [47] Haines, D. A. (1989). A lower atmosphere severity index for wildlife fires. National Weather Digest, 13, 23-27.
  • [48] Werth, P., & Ochoa, R. (1993). The evaluation of Idaho wildfire growth using the Haines Index. Weather and Forecasting, 8(2), 223-234.
  • [49] Beverly, J. L., & Wotton, B. M. (2007). Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire, 16(2), 161-173.
  • [50] Dimitrakopoulos, A. P., Bemmerzouk, A. M., & Mitsopoulos, I. D. (2011). Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorological Applications, 18(1), 83-93.
  • [51] Chelli S., Maponi P., Campetella G., Monteverde P., Foglia M., Paris E., Lolis A., & Panagopoulos T. (2015). Adaptation of the Canadian fire weather index to Mediterranean forests. Natural Hazards, 75(2), 1795-1810.
  • [52] Carvalho, A., Flannigan, M. D., Logan, K., Miranda, A. I., & Borrego, C. (2008). Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. International Journal of Wildland Fire, 17(3), 328-338.
  • [53] Van Wagner, C. E., & Forest, P. (1987). Development and structure of the canadian forest fireweather index system. In Can. For. Serv., Forestry Tech. Rep.[54] Canadian Fire Weather Index System (FWI system), https://www.frames.gov/files/6014/1576/1411/FWI-history.pdf.
  • [55] Good, P., Moriondo, M., Giannakopoulos, C., & Bindi, M. (2008). The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. International Journal of Wildland Fire, 17(2), 155-165.
  • [56] Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control. Res. Pap. SE-38. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 35 p., 38.
  • [57] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009a). A simple index for assessing fire danger rating. Environmental Modelling & Software, 24(6), 764-774.
  • [58] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009b). A simple index for assessing fuel moisture content. Environmental Modelling & Software, 24(5), 637-646.
  • [59] Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645-1658.
  • [60] Satir, O., Berberoglu, S., & Cilek, A. (2016). Modelling long-term forest fire risk using fire weather index under climate change in Turkey. Applied Ecology and Environmental Research, 14(4), 537-551.
  • [61] Sirca, C., Salis, M., Arca, B., Duce, P., & Spano, D. (2018). Assessing the performance of fire danger indexes in a Mediterranean area. iForest-Biogeosciences and Forestry, 11(5), 563.
  • [62] Noble, I. R., Gill, A. M., & Bary, G. A. V. (1980). McArthur's fire‐danger meters expressed as equations. Australian Journal of Ecology, 5(2), 201-203.
  • [63] Pérez-Sánchez, J., Senent-Aparicio, J., Díaz-Palmero, J. M., & de Dios Cabezas-Cerezo, J. (2017). A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain). Science of the Total Environment, 590, 761-774.
  • [64] San-Miguel-Ayanz, J., Carlson, J. D., Alexander, M., Tolhurst, K., Morgan, G., Sneeuwjagt, R., & Dudley, M. (2003). Current methods to assess fire danger potential. In Wildland fire danger estimation and mapping: The role of remote sensing data (pp. 21-61).
  • [65] Sirca, C., Spano, D., Duce, P., Delogu, G., Cicalò, G. O., & Viegas, D. X. (2007). Performance of a newly developed integrated fire rating index in Sardinia, Italy. In Proceedings of the 4th International WildLand FireConference. Seville, Spain(pp. 13-17).
  • [66] Goodrick, S. L. (2002). Modification of the Fosberg fire weather index to include drought. International Journal of Wildland Fire, 11(4), 205-211.
  • [67] Ganatsas, P., Antonis, M., & Marianthi, T. (2011). Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agricultural and forest meteorology, 151(2), 241-250.
  • [68] Venevsky, S., Thonicke, K., Sitch, S., & Cramer, W. (2002). Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Global Change Biology, 8(10), 984–998. doi:10.1046/j.1365-2486.2002. 00528.x.
  • [69] Angström, A. (1949). Swedish Meteorological Research 1939-1948. Tellus, 1(1), 60–64. doi:10.1111/j.2153-3490. 1949.tb01930.x.
  • [70] Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. (2014). Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Policy, 37, 11-22.
  • [71] Türkeş, M., & Altan, G. (2012). Çanakkale’nin 2008 yılı büyük orman yangınlarının meteorolojik ve hidroklimatolojik analizi. Coğrafi Bilimler Dergisi, 10(2), 195-218.
  • [72] Wang, X., Wotton, B. M., Cantin, A. S., Parisien, M. A., Anderson, K., Moore, B., & Flannigan, M. D. (2017). cffdrs: an R package for the Canadian forest fire danger rating system. Ecological Processes, 6(1), 5.
  • [73] Lawson, B. D., & Armitage, O. B. (2008). Weather guide for the Canadian forest fire danger rating system.
There are 66 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Burcu Calda 0000-0002-2511-9492

Nazan An This is me

Mustafa Tufan Turp

Levent Kurnaz

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 32 Issue: 1

Cite

APA Calda, B., An, N., Turp, M. T., Kurnaz, L. (2020). İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi. International Journal of Advances in Engineering and Pure Sciences, 32(1), 15-32. https://doi.org/10.7240/jeps.571001
AMA Calda B, An N, Turp MT, Kurnaz L. İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi. JEPS. March 2020;32(1):15-32. doi:10.7240/jeps.571001
Chicago Calda, Burcu, Nazan An, Mustafa Tufan Turp, and Levent Kurnaz. “İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi”. International Journal of Advances in Engineering and Pure Sciences 32, no. 1 (March 2020): 15-32. https://doi.org/10.7240/jeps.571001.
EndNote Calda B, An N, Turp MT, Kurnaz L (March 1, 2020) İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi. International Journal of Advances in Engineering and Pure Sciences 32 1 15–32.
IEEE B. Calda, N. An, M. T. Turp, and L. Kurnaz, “İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi”, JEPS, vol. 32, no. 1, pp. 15–32, 2020, doi: 10.7240/jeps.571001.
ISNAD Calda, Burcu et al. “İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi”. International Journal of Advances in Engineering and Pure Sciences 32/1 (March 2020), 15-32. https://doi.org/10.7240/jeps.571001.
JAMA Calda B, An N, Turp MT, Kurnaz L. İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi. JEPS. 2020;32:15–32.
MLA Calda, Burcu et al. “İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 1, 2020, pp. 15-32, doi:10.7240/jeps.571001.
Vancouver Calda B, An N, Turp MT, Kurnaz L. İklim Değişikliğinin Akdeniz Havzasındaki Orman Yangınlarına Etkisi. JEPS. 2020;32(1):15-32.