Research Article
BibTex RIS Cite

Karışık Modlu Yorulma Çatlak Büyümesi Olayının Yeni Bir Hesaplamalı Yöntem ile İncelenmesi

Year 2020, Volume: 32 Issue: 3, 295 - 302, 01.09.2020
https://doi.org/10.7240/jeps.651164

Abstract

Üç boyutlu ve karışık modlu yorulma çatlak büyümesi
problemleri kırılma mekaniği açısından her zaman ilgi çekici bir alan olmuştur.
Hava-uzay ve otomotiv gibi endüstrilerdeki ürünlerin yorulmaya bağlı olarak
kırılma sonucu meydana gelen hataları oldukça yaygındır. Bu ürünlerdeki
herhangi bir hata veya başarısızlık, komponentlerine yüksek bir hasar veya
insan sağlığı açısından yüksek risk olarak sonuçlanabilir. Bu tür hata veya
arızaların analizi ile doğru sonucu bulmaya çalışmak belli bir zorluk ve
karmaşıklık içerebilir. Problemlerdeki karışıklıklar hem yükleme çeşidiyle hem
de belli bir geometri ile alakalı olarak ortaya çıkabilir. Bahsi geçen
problemlerin deneysel yöntemler kullanarak analizi zor ve maliyetli olabilir.
Bu sebeple, başlangıçta sürecin teorik yönlerini kurmak ve sonrasında çözüm için
hesaplamalı bir yöntem oluşturmak eldeki problemin çözümü açısından önemlidir. Çalışmada
kullanılan çatlak büyüme kanunu NASGRO modelidir ve ilerleme açısının
belirlenmesi de maksimum çevresel gerilme kriteriyle gerçekleştirilmektedir. İlerleme
aşamalarının ön-işlem sürecinde ve alt modelleme tekniğinin faydalanılmasında
Hypermesh ve ANSYS APDL programları kullanılmaktadır. Problemin çözüm kısmı ise
FRAC3D programı ve bünyesindeki zenginleştirilmiş elemanlar ile yeni
geliştirilmiş çatlak büyüme araçlarıyla yapılmaktadır. Örnekleme amacıyla uçak
motorundaki kompresörün kanat kısmındaki çatlakların incelenmesine yer
verilecektir.

References

  • [1] Dhont, G. (1998). Automatic 3-D mode I crack propagation calculations with finite elements, Int. Jour. of Num. Met. in Eng., 41, 739-757.
  • [2] Carter, B.J., Wawrzynek P.A., Ingraffea, A.R. (2000). Automated 3-D crack growth simulation, Int. Jour. of Num. Met. in Eng., 47, 229-253.
  • [3] Hou, J., Goldstraw, M., Maan, S., Knop, M. (2001). An evaluation of 3-D crack growth using ZENCRACK, DSTO-TR-1158, Defense Science and Technology Organization.
  • [4] Schollmann, M., Fan, M., Richard, H.A. (2003). Development of a new software for adaptive crack growth simulations in 3-D structures, Eng. Frac. Mech., 70, 249-268.
  • [5] Sukumar, N., Chopp, D.L., Bechet, E., Moes, N. (2008). Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method, Int. Jour. of Num. Met. in Eng., 76, 727-748.
  • [6] Dundar, H., Ayhan, A.O. (2016). Non-planar crack growth analyses of multiple cracks in thin-walled structures, Int. Jour. of Fatigue, 92, 596-604.
  • [7] Sih, G.C. (1990). Mechanics of fracture initiation and propagation, Kluwer Academic Publishers.
  • [8] Paris, P., Erdogan, F. (1963). A critical analysis of crack propagation laws, Jour. of Basic Eng., 85, 528-533.
  • [9] Nasgro Fracture Mechanics and Fatigue Crack Growth Analysis Software Reference Manual (2016). Version 8.1, NASA Johnson Space Center and Southwest Research Institute, Texas, ABD.
  • [10] Erdogan, F., Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear, Jour. of Basic Eng, 85, 519-525.
  • [11] Ayhan, A.O., Nied, H.F. (2002). Stress Intensity Factors for Three-dimensional Surface Cracks Using Enriched Finite Elements, Int. Jour. for Num. Met. in Eng., 54, 899-921.
  • [12] Saribay, M., Nied, H.F. (2014). Dynamic stress intensity factors for suddenly loaded structures using enriched finite elements, Theor. Appl. Fract. Mech., 70, 59-67.
  • [13] Ayhan, A.O. (2011). Simulation of three-dimensi onal fatigue crack propagation using enriched finite elements, Computers and Structures, 89, 801-812.
  • [14] Altair Hyperworks, Version 11.0, Copyright 1986-2019 Altair Engineering
  • [15] ANSYS Mechanical APDL, Version 15.0.7, Copyright 2014 SAS IP, Inc.
  • [16] https://ffden-2.phys.uaf.edu/webproj/212_spring_2015 /Timothy_Sherry/Tim_Sherry/Compressor.htm
  • [17] https://grabcad.com/library/compressor-blade-jet-engine-1

Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure

Year 2020, Volume: 32 Issue: 3, 295 - 302, 01.09.2020
https://doi.org/10.7240/jeps.651164

Abstract



Analysis of 3-D fatigue crack growth problems with
mixed-mode loading has always been an interesting area in the field of fracture
mechanics. Fracture failure under the influence of fatigue loading has been a common
experience for various industries’ products, such as aerospace and automotive
components. Any possible failure in these structures can result in high damage
to these components or a serious risk for people’s health. The analysis of such
failures may involve great challenges and complexities for obtaining the
accurate solution. The complexities of the problem may not only be related to
the loading type, but also to the specific geometry itself. Such problems are
hard and costly to analyze with experimental methods. Therefore, it is important
to establish the theoretical aspects of the process initially, and then having
a computational procedure to solve the problem at hand. The crack growth law
used in this procedure is NASGRO-type, and determination of the propagation
angle is based on the maximum hoop stress criterion. Hypermesh and ANSYS APDL software
are benefited during preprocessing of the propagation steps and application of
submodeling procedure. Solution of the problem is performed with FRAC3D
program, its enriched element methodology and newly implemented tools for crack
growth. A specific example that includes cracking within an aircraft engine compressor
blade is shown for demonstration purpose.          




References

  • [1] Dhont, G. (1998). Automatic 3-D mode I crack propagation calculations with finite elements, Int. Jour. of Num. Met. in Eng., 41, 739-757.
  • [2] Carter, B.J., Wawrzynek P.A., Ingraffea, A.R. (2000). Automated 3-D crack growth simulation, Int. Jour. of Num. Met. in Eng., 47, 229-253.
  • [3] Hou, J., Goldstraw, M., Maan, S., Knop, M. (2001). An evaluation of 3-D crack growth using ZENCRACK, DSTO-TR-1158, Defense Science and Technology Organization.
  • [4] Schollmann, M., Fan, M., Richard, H.A. (2003). Development of a new software for adaptive crack growth simulations in 3-D structures, Eng. Frac. Mech., 70, 249-268.
  • [5] Sukumar, N., Chopp, D.L., Bechet, E., Moes, N. (2008). Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method, Int. Jour. of Num. Met. in Eng., 76, 727-748.
  • [6] Dundar, H., Ayhan, A.O. (2016). Non-planar crack growth analyses of multiple cracks in thin-walled structures, Int. Jour. of Fatigue, 92, 596-604.
  • [7] Sih, G.C. (1990). Mechanics of fracture initiation and propagation, Kluwer Academic Publishers.
  • [8] Paris, P., Erdogan, F. (1963). A critical analysis of crack propagation laws, Jour. of Basic Eng., 85, 528-533.
  • [9] Nasgro Fracture Mechanics and Fatigue Crack Growth Analysis Software Reference Manual (2016). Version 8.1, NASA Johnson Space Center and Southwest Research Institute, Texas, ABD.
  • [10] Erdogan, F., Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear, Jour. of Basic Eng, 85, 519-525.
  • [11] Ayhan, A.O., Nied, H.F. (2002). Stress Intensity Factors for Three-dimensional Surface Cracks Using Enriched Finite Elements, Int. Jour. for Num. Met. in Eng., 54, 899-921.
  • [12] Saribay, M., Nied, H.F. (2014). Dynamic stress intensity factors for suddenly loaded structures using enriched finite elements, Theor. Appl. Fract. Mech., 70, 59-67.
  • [13] Ayhan, A.O. (2011). Simulation of three-dimensi onal fatigue crack propagation using enriched finite elements, Computers and Structures, 89, 801-812.
  • [14] Altair Hyperworks, Version 11.0, Copyright 1986-2019 Altair Engineering
  • [15] ANSYS Mechanical APDL, Version 15.0.7, Copyright 2014 SAS IP, Inc.
  • [16] https://ffden-2.phys.uaf.edu/webproj/212_spring_2015 /Timothy_Sherry/Tim_Sherry/Compressor.htm
  • [17] https://grabcad.com/library/compressor-blade-jet-engine-1
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Murat Sarıbay 0000-0002-4265-0488

Publication Date September 1, 2020
Published in Issue Year 2020 Volume: 32 Issue: 3

Cite

APA Sarıbay, M. (2020). Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure. International Journal of Advances in Engineering and Pure Sciences, 32(3), 295-302. https://doi.org/10.7240/jeps.651164
AMA Sarıbay M. Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure. JEPS. September 2020;32(3):295-302. doi:10.7240/jeps.651164
Chicago Sarıbay, Murat. “Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon With a New Computational Procedure”. International Journal of Advances in Engineering and Pure Sciences 32, no. 3 (September 2020): 295-302. https://doi.org/10.7240/jeps.651164.
EndNote Sarıbay M (September 1, 2020) Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure. International Journal of Advances in Engineering and Pure Sciences 32 3 295–302.
IEEE M. Sarıbay, “Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure”, JEPS, vol. 32, no. 3, pp. 295–302, 2020, doi: 10.7240/jeps.651164.
ISNAD Sarıbay, Murat. “Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon With a New Computational Procedure”. International Journal of Advances in Engineering and Pure Sciences 32/3 (September 2020), 295-302. https://doi.org/10.7240/jeps.651164.
JAMA Sarıbay M. Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure. JEPS. 2020;32:295–302.
MLA Sarıbay, Murat. “Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon With a New Computational Procedure”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 3, 2020, pp. 295-02, doi:10.7240/jeps.651164.
Vancouver Sarıbay M. Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure. JEPS. 2020;32(3):295-302.