Research Article
BibTex RIS Cite

Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi

Year 2021, Volume: 33 Issue: 1, 28 - 38, 30.01.2021
https://doi.org/10.7240/jeps.686886

Abstract

İnternet kullanımının gittikçe yaygınlaşması daha fazla insanın şiddet ve korku içerebilecek içeriğe erişme riskini arttırmıştır. Bu durum internet üzerindeki içeriğin diğer medya araçlarına göre daha az denetlenmesi ile birleştiğinde özellikle çocuklar ve bu tip içeriğe karşı hassas olan kişiler için önlemler alınması gereği ortaya çıkmıştır. Bu çalışmada renk ve doku özellikleri kullanılarak kan içeren görüntülerin tespitini yapabilecek süper piksel tabanlı bir yöntem önerilmiştir. Öncelikle kan görüntüsü içeren ve içermeyen fotoğraflardan oluşan bir veri seti hazırlanmış ve bu veri setindeki resimlere süperpiksel bölütleme metodu uygulanarak anlamlı, renk ve doku özellikleri bakımından benzer parçalar elde etmek amaçlanmıştır. Sistemin başarısına etkisinin ölçülmesi amacı ile bölütleme algoritmasının oluşturacağı süperpiksel sayısı üç farklı üst sınır ile denenmiştir. Bölütleme algoritmasından elde edilen parçalardan renk ve doku özellikleri çıkartılmış ve destek vektör makinesi yardımı ile kanlı bölge tespiti yapabilecek modeller oluşturulmuştur. Modeller oluşturulurken başarıları karşılaştırmak amacı ile çeşitli çekirdek fonksiyonları denenmiştir. Önerilen sistemde ortalama %96 doğruluk elde edilmiştir

References

  • [1] W. Hu, H. Zuo, O. Wu, Y. Chen, Z. Zhang, and D. Suter, “Recognition of Adult images, videos, and web page bags” ACM Transactionson Multimedia Computing, Communications, and Applications (TOMM), vol. 7, no. 1, p. 28, 2011.
  • [2] A. P. B. Lopes, S. E. F. de Avila, A. N. A. Peixoto, R. S. Oliveira, and A. de Albuquerque Araújo, “A bag-of-features approach based on hue-sıft descriptor for nude detection,” in Proceedings of the XVII European Signal Processing Conference (EUSIPCO), Glasgow, Scotland, 2009.
  • [3] R. Guermazi, M. Hammami, and A. B. Hamadou, “Violent web images classification based on mpeg7 color descriptors,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, IEEE, 2009, pp. 3106– 3111.
  • [4] D. Wang, Z. Zhang, W. Wang, L. Wang, and T. Tan, “Baseline results for violence detection in still images,” Sep. 2012, pp. 54–57, ISBN: 978-1-4673-2499-1. DOI: 10.1109/AVSS.2012.16.
  • [5] B. Li, W. Xiong, and W. Hu, “Horror image recognition based on context-aware multi-instance learning,” vol. 24, Dec. 2011, pp. 1158–1163. DOI: 10.1109/ ICDM.2011.155.
  • [6] Nievas, E. B., Suarez, O. D., García, G. B., & Sukthankar, R. (2011, August). Violence detection in video using computer vision techniques. In International conference on Computer analysis of images and patterns (pp. 332-339). Springer, Berlin, Heidelberg.
  • [7] Zhou, P., Ding, Q., Luo, H., & Hou, X. (2018). Violence detection in surveillance video using low-level features. PLoS one, 13(10), e0203668
  • [8] Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., & Baik, S. W. (2019). Violence detection using spatiotemporal features with 3D convolutional neural network. Sensors, 19(11), 2472.
  • [9] Hassner, T.; Itcher, Y.; Kliper-Gross, O. Violent flows: Real-time detection of violent crowd behavior. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012; pp. 1–6.
  • [10] Y.Gao, O.Wu, C.Wang, W.Hu, and J.Yang, “Region-based blood color detection and its application to bloody image filtering,” in 2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Jul.2015, pp.45–50. DOI: 10.1109/ICWAPR.2015.7295924.
  • [11] P. Neubert, “Superpixels and their application for visual place recognition in changing environments,” 2015.
  • [12] Superpixel: Empirical studies and applications, [Online]. Available: http: //ttic.uchicago.edu/~xren/research/superpixel/.
  • [13] Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., & Van Gool, L. (2012, October). Seeds: Superpixels extracted via energy-driven sampling. In European conference on computer vision (pp. 13-26). Springer, Berlin, Heidelberg.
  • [14] Marceau, D. J., Howarth, P. J., Dubois, J. M. M., & Gratton, D. J. (1990). Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 513-519.
  • [15] Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.
Year 2021, Volume: 33 Issue: 1, 28 - 38, 30.01.2021
https://doi.org/10.7240/jeps.686886

Abstract

References

  • [1] W. Hu, H. Zuo, O. Wu, Y. Chen, Z. Zhang, and D. Suter, “Recognition of Adult images, videos, and web page bags” ACM Transactionson Multimedia Computing, Communications, and Applications (TOMM), vol. 7, no. 1, p. 28, 2011.
  • [2] A. P. B. Lopes, S. E. F. de Avila, A. N. A. Peixoto, R. S. Oliveira, and A. de Albuquerque Araújo, “A bag-of-features approach based on hue-sıft descriptor for nude detection,” in Proceedings of the XVII European Signal Processing Conference (EUSIPCO), Glasgow, Scotland, 2009.
  • [3] R. Guermazi, M. Hammami, and A. B. Hamadou, “Violent web images classification based on mpeg7 color descriptors,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, IEEE, 2009, pp. 3106– 3111.
  • [4] D. Wang, Z. Zhang, W. Wang, L. Wang, and T. Tan, “Baseline results for violence detection in still images,” Sep. 2012, pp. 54–57, ISBN: 978-1-4673-2499-1. DOI: 10.1109/AVSS.2012.16.
  • [5] B. Li, W. Xiong, and W. Hu, “Horror image recognition based on context-aware multi-instance learning,” vol. 24, Dec. 2011, pp. 1158–1163. DOI: 10.1109/ ICDM.2011.155.
  • [6] Nievas, E. B., Suarez, O. D., García, G. B., & Sukthankar, R. (2011, August). Violence detection in video using computer vision techniques. In International conference on Computer analysis of images and patterns (pp. 332-339). Springer, Berlin, Heidelberg.
  • [7] Zhou, P., Ding, Q., Luo, H., & Hou, X. (2018). Violence detection in surveillance video using low-level features. PLoS one, 13(10), e0203668
  • [8] Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., & Baik, S. W. (2019). Violence detection using spatiotemporal features with 3D convolutional neural network. Sensors, 19(11), 2472.
  • [9] Hassner, T.; Itcher, Y.; Kliper-Gross, O. Violent flows: Real-time detection of violent crowd behavior. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012; pp. 1–6.
  • [10] Y.Gao, O.Wu, C.Wang, W.Hu, and J.Yang, “Region-based blood color detection and its application to bloody image filtering,” in 2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Jul.2015, pp.45–50. DOI: 10.1109/ICWAPR.2015.7295924.
  • [11] P. Neubert, “Superpixels and their application for visual place recognition in changing environments,” 2015.
  • [12] Superpixel: Empirical studies and applications, [Online]. Available: http: //ttic.uchicago.edu/~xren/research/superpixel/.
  • [13] Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., & Van Gool, L. (2012, October). Seeds: Superpixels extracted via energy-driven sampling. In European conference on computer vision (pp. 13-26). Springer, Berlin, Heidelberg.
  • [14] Marceau, D. J., Howarth, P. J., Dubois, J. M. M., & Gratton, D. J. (1990). Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 513-519.
  • [15] Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ömer Faruk Dursun This is me 0000-0001-6633-4458

İrem Türkmen 0000-0002-8690-0725

Publication Date January 30, 2021
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Dursun, Ö. F., & Türkmen, İ. (2021). Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi. International Journal of Advances in Engineering and Pure Sciences, 33(1), 28-38. https://doi.org/10.7240/jeps.686886
AMA Dursun ÖF, Türkmen İ. Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi. JEPS. January 2021;33(1):28-38. doi:10.7240/jeps.686886
Chicago Dursun, Ömer Faruk, and İrem Türkmen. “Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi”. International Journal of Advances in Engineering and Pure Sciences 33, no. 1 (January 2021): 28-38. https://doi.org/10.7240/jeps.686886.
EndNote Dursun ÖF, Türkmen İ (January 1, 2021) Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi. International Journal of Advances in Engineering and Pure Sciences 33 1 28–38.
IEEE Ö. F. Dursun and İ. Türkmen, “Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi”, JEPS, vol. 33, no. 1, pp. 28–38, 2021, doi: 10.7240/jeps.686886.
ISNAD Dursun, Ömer Faruk - Türkmen, İrem. “Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi”. International Journal of Advances in Engineering and Pure Sciences 33/1 (January 2021), 28-38. https://doi.org/10.7240/jeps.686886.
JAMA Dursun ÖF, Türkmen İ. Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi. JEPS. 2021;33:28–38.
MLA Dursun, Ömer Faruk and İrem Türkmen. “Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 1, 2021, pp. 28-38, doi:10.7240/jeps.686886.
Vancouver Dursun ÖF, Türkmen İ. Süper Piksel Tabanlı Otomatik Kanlı Bölge Tespit Sistemi. JEPS. 2021;33(1):28-3.