Research Article
BibTex RIS Cite

Geçiş Metali Katkılı ZnO’in Ferromanyetizma ve Büyüme Korelasyonunun İncelenmesi

Year 2021, Volume: 33 Issue: 1, 47 - 52, 30.01.2021
https://doi.org/10.7240/jeps.693143

Abstract

Bu çalışmada, bir dizi 3d geçiş metali (TM) (Co, Ni ve Fe) katkılı ZnO parçacıkları basit çöktürme yöntemi ile sentezlenmiştir. GM katkılı ZnO örneklerinin manyetik özelliklerini incelemek için yapısal, morfolojik ve manyetik çalışmalar yapılmıştır. Kimyasal bileşimde Zn, O ve katkı elementlerin yüzdesi elementel analiz tarafından doğrulandı. Katkılı iyonlar Zn2+ iyonları ile ikame edilirken, ZnO yapısındaki dramatik değişim GM katkısı ile saptandı. Yüzey morfolojilerinden nanokümelerin oluşumu gösterildi. FTIR spektrumu, saf ve GM katkılı ZnO oluştuğunun bir kanıtıdır. GM iyonları arasındaki değişim etkileşimi nedeniyle Fe, Ni ve Co katkısı ile paramanyetik durumdan ferromanyetikliğe saf ZnO örneği geçmiştir. Fe: ZnO örnekleri ZnO kristal kalitesini düşürmüş ve yığılma yüzey görüntüleri tespit edilmiş olsa da, ferromanyetizmanın ZnO'ya Fe katkısıi ile artması ilginçtir.

Supporting Institution

Çanakkale onsekiz Mart Üniversitesi BAP Birimi

Project Number

FBD-2017-1321

References

  • 1. Acharya S, Biswal S.K., Sarangi S.N., Effect of structure and morphology on the UV photo detection of ZnO nanostructures and microstructures. Chemical Physics. https://doi.org/10.1016/j.chemphys.2019.04.014.
  • 2. Özütok F, Demiri S., Nanoflower-Lıke ZnO Fılms Prepared By Modıfıed Chemıcal Bath Deposıtıon: Synthesıs, Optıcal Propertıes And NO2 Gas Sensıng Mechanısm, Digest Journal of Nanomaterials and Biostructures, V.12, No.2, 2017, pp. 309-317.
  • 3. Cao L, Kiely J, Piano M, Luxton R., Copper Oxide/Zinc Oxide Composite Nano- Surface for Use in a Biosensor, Materials, https://doi.org/10.3390/ma12071126, 2019. 4. Herna ́ndez M.R. and et.al, Hollow ZnO microspheres functionalized with electrochemical graphene oxide for the photodegradation of salicylic acid, Rsc. Adv., 3 https://doi.org/10.1039/c8ra10113b.
  • 5. Machovsky M., Kuritka I., Kozakova Z., Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles, Materials Letters, 6 http://dx.doi.org/10.1016/j.matlet.2012.07.038, 2012.
  • 6. Özütok F., Er I.K., Acar S., Demiri S., Enhancing the CO gas sensing properties of ZnO thin films with the decoration of MWCNTs. Journal of Materials Science: Materials in Electronics, https://doi.org/ 10.1007/ s10854-018-0288-2, 2018.
  • 7. Kaps S. and et.al., Piezoresistive Response of Quasi-One-Dimensional ZnO Nanowires Using an in Situ Electromechanical Device. ACS Omega. 12 https://doi.org/10.1021/acsomega.7b00041, 2017. 8. Mala N and et.al. (2016). Formation of hexagonal plate shaped ZnO microparticles –A study on antibacterial and magnetic properties. Ceramics International. 15 http://dx.doi.org/10.1016/j.ceramint.2016.01.132.
  • 9. Bellingeri E and et.al (2019). Influence of free charge carrier density on the magnetic behavior of (Zn,Co)O thin film studied by Field Effect modulation of magnetotransport. SCIENTIFIC REPORTS, https://doi.org/10.1038/s41598-018- 1936336-w.
  • 10. Qi K, Xing X., Zada A., Li M., Wang Q., Liu S., Lin H., Wang G., Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies, Ceramics International, 23 https://doi.org/10.1016/j.ceramint.2019.09.116, 2019.
  • 11. Agarval D.C. et.al., Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering, SCIENTIFIC REPORTS, doi:10.3390/mi10090622, 2019.
  • 12. Wang W., Fabrication and Study on Magnetic-Optical Properties of Ni-Doped ZnO Nanorod Arrays, Micromachines, doi:10.3390/mi10090622, 2019.
  • 13. Zong Y., Sun Y., Meng S., Wang Y., Xing Z., Li X., Zheng X., Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies, RSC Adv., DOI: 32 10.1039/c9ra03620b, 2019. 14. Beltra ́n J.J., Barrero C., Punnoose A., Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles, Phys. Chem. Chem. Phys, DOI: 3 10.1039/c5cp01408e , 2015. 15. Ghosh B, Benecha E.M., Ray S.C., Sarma S., Pong W.F., Strydom A.M., Wu J.J., ZnO nanorods decorated with nanocrystalline (nc) Au Particles:Electronic structure and magnetic behaviours. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2019.05.062., 2018.
  • 16. Ashokkumar M, Muthukumaran S., Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn. Physica E. https://doi.org/10.1016/j.physe.2015.02.010, 2015.
  • 17. Djerdj I, Jaglicic Z, Arcon D, Niederberger M., Co-Doped ZnO nanoparticles: Minireview. Nanoscale. https://doi.org/10.1039/c0nr00148a., 2010.
  • 18. Chattopadhyay S and et.al., Defects induced ferromagnetism in Mn doped ZnO. Journal of Magnetism and Magnetic Materials. 10.1016/j.jmmm.2010.09.042, 2010.
  • 19. Asikuzun E, Ozturk O, Arda L, Terzioglu C., Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films, J. Molec. Struct., 1165: 1-7, 17 2018.
  • 20. Asikuzun E, Ozturk O, Arda L, Tasci AT, Kartal F, Terzioglu C., High-quality c-axis oriented non-vacuum Er doped ZnO thin films. Cer. Inter., V:42, p.p.8085-8091, 20 2016.
  • 21. Thanh N.T.K., Maclean N., Mahiddine S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem. Rev., dx.doi.org/10.1021/cr400544s, 2014.
  • 22. Rodríguez-Gonzaĺez B, Vereda F, Vicente J, Hidalgo-Álvarez R., Rough and HollowSpherical Magnetite Microparticles: Revealing the Morphology, Internal Structure, and Growth Mechanism, J. Phys. Chem., dx.doi.org/10.1021/jp3100206, 2013.
  • 23. Sajjad M, Ullah I, Khan M.I., Khan J., Khan M.Y., Qureshi M.T., Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Results in Physics, https://doi.org/10.1016/j.rinp.2018. 04.010, 2018.
  • 24. Thangeeswari T, George A.T., Kumar A.A., Optical Properties and FTIR Studies of Cobalt Doped ZnO Nanoparticles by Simple Solution Method, Indian Journal of Science and Technology 10.17485/ijst/2016/v9i1/85776, 2016. 25. Bhakta N., Chakrabarti P.K., Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles, Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2019.03.106, 2019.
  • 26. Handore K and et.al., Novel Green Route of Synthesis of ZnO Nanoparticles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes, Journal of Macromolecular Science. Part A: Pure and Applied Chemistry, 10.1080/10601325.2014.967078, 2014.
  • 27. Heiba ZK, Arda L, Mohamed MB, Mostafa NY, Dogan N (2013). Effect of annealing temperature on structural and magnetic properties of Zn0.94Co0.05Cu0.01O. J. Supercond. Nov. Magn. 26: 3487-3493.
  • 28. Li T., Qiu H., Wu P., Wang M., Ma R., Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering. Thin Solid Films, V:515, 13 p.p.3905–3909, 2007.
  • 29. Saeki H., Tabata H., Kawai T., Magnetic and electric properties of Vanadium doped ZnO films. Solid State Communications. 120: 439-443, 2001.
  • 30. Garcia M.A. and et.al., Magnetic properties of ZnO Nanoparticles, Nano Lett., 7 (6): 489–1494, 2007.
  • 31. Adeagbo W.A., Fischer G., Ernst A. Hergert W., Magnetic effects of defect pair formation in ZnO, Journal of Physıcs: Condensed Matter, doi:10.1088/0953- 20 8984/22/43/436002, 2010.

Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO

Year 2021, Volume: 33 Issue: 1, 47 - 52, 30.01.2021
https://doi.org/10.7240/jeps.693143

Abstract

In this study, a series of 3d transition metal (TM) (Co, Ni and Fe) doped ZnO particles synthesized by simple co-precipitation method. Structural, morphological and magnetic properties were investigated to determine correlation between growth process and ferromagnetism of metal doped ZnO samples. All samples had ZnO hexzagonal würtzite structure and slightly shift of ZnO indexed peaks was observed by TM incorporation in ZnO. Although ZnO samples had granular forms, agglomerative forms had emerged in TM:ZnO samples due to the fast growth process. The pure ZnO sample transformed paramagnetic to ferromagnetic by TM incorporation due to carrier mediated exchange interaction between TM ions. The results demonstated that doping with Fe3+ ions in ZnO structure had enhanced ferromagnetism although fast growth and high particle agglomeration.

Project Number

FBD-2017-1321

References

  • 1. Acharya S, Biswal S.K., Sarangi S.N., Effect of structure and morphology on the UV photo detection of ZnO nanostructures and microstructures. Chemical Physics. https://doi.org/10.1016/j.chemphys.2019.04.014.
  • 2. Özütok F, Demiri S., Nanoflower-Lıke ZnO Fılms Prepared By Modıfıed Chemıcal Bath Deposıtıon: Synthesıs, Optıcal Propertıes And NO2 Gas Sensıng Mechanısm, Digest Journal of Nanomaterials and Biostructures, V.12, No.2, 2017, pp. 309-317.
  • 3. Cao L, Kiely J, Piano M, Luxton R., Copper Oxide/Zinc Oxide Composite Nano- Surface for Use in a Biosensor, Materials, https://doi.org/10.3390/ma12071126, 2019. 4. Herna ́ndez M.R. and et.al, Hollow ZnO microspheres functionalized with electrochemical graphene oxide for the photodegradation of salicylic acid, Rsc. Adv., 3 https://doi.org/10.1039/c8ra10113b.
  • 5. Machovsky M., Kuritka I., Kozakova Z., Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles, Materials Letters, 6 http://dx.doi.org/10.1016/j.matlet.2012.07.038, 2012.
  • 6. Özütok F., Er I.K., Acar S., Demiri S., Enhancing the CO gas sensing properties of ZnO thin films with the decoration of MWCNTs. Journal of Materials Science: Materials in Electronics, https://doi.org/ 10.1007/ s10854-018-0288-2, 2018.
  • 7. Kaps S. and et.al., Piezoresistive Response of Quasi-One-Dimensional ZnO Nanowires Using an in Situ Electromechanical Device. ACS Omega. 12 https://doi.org/10.1021/acsomega.7b00041, 2017. 8. Mala N and et.al. (2016). Formation of hexagonal plate shaped ZnO microparticles –A study on antibacterial and magnetic properties. Ceramics International. 15 http://dx.doi.org/10.1016/j.ceramint.2016.01.132.
  • 9. Bellingeri E and et.al (2019). Influence of free charge carrier density on the magnetic behavior of (Zn,Co)O thin film studied by Field Effect modulation of magnetotransport. SCIENTIFIC REPORTS, https://doi.org/10.1038/s41598-018- 1936336-w.
  • 10. Qi K, Xing X., Zada A., Li M., Wang Q., Liu S., Lin H., Wang G., Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies, Ceramics International, 23 https://doi.org/10.1016/j.ceramint.2019.09.116, 2019.
  • 11. Agarval D.C. et.al., Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering, SCIENTIFIC REPORTS, doi:10.3390/mi10090622, 2019.
  • 12. Wang W., Fabrication and Study on Magnetic-Optical Properties of Ni-Doped ZnO Nanorod Arrays, Micromachines, doi:10.3390/mi10090622, 2019.
  • 13. Zong Y., Sun Y., Meng S., Wang Y., Xing Z., Li X., Zheng X., Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies, RSC Adv., DOI: 32 10.1039/c9ra03620b, 2019. 14. Beltra ́n J.J., Barrero C., Punnoose A., Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles, Phys. Chem. Chem. Phys, DOI: 3 10.1039/c5cp01408e , 2015. 15. Ghosh B, Benecha E.M., Ray S.C., Sarma S., Pong W.F., Strydom A.M., Wu J.J., ZnO nanorods decorated with nanocrystalline (nc) Au Particles:Electronic structure and magnetic behaviours. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2019.05.062., 2018.
  • 16. Ashokkumar M, Muthukumaran S., Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn. Physica E. https://doi.org/10.1016/j.physe.2015.02.010, 2015.
  • 17. Djerdj I, Jaglicic Z, Arcon D, Niederberger M., Co-Doped ZnO nanoparticles: Minireview. Nanoscale. https://doi.org/10.1039/c0nr00148a., 2010.
  • 18. Chattopadhyay S and et.al., Defects induced ferromagnetism in Mn doped ZnO. Journal of Magnetism and Magnetic Materials. 10.1016/j.jmmm.2010.09.042, 2010.
  • 19. Asikuzun E, Ozturk O, Arda L, Terzioglu C., Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films, J. Molec. Struct., 1165: 1-7, 17 2018.
  • 20. Asikuzun E, Ozturk O, Arda L, Tasci AT, Kartal F, Terzioglu C., High-quality c-axis oriented non-vacuum Er doped ZnO thin films. Cer. Inter., V:42, p.p.8085-8091, 20 2016.
  • 21. Thanh N.T.K., Maclean N., Mahiddine S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem. Rev., dx.doi.org/10.1021/cr400544s, 2014.
  • 22. Rodríguez-Gonzaĺez B, Vereda F, Vicente J, Hidalgo-Álvarez R., Rough and HollowSpherical Magnetite Microparticles: Revealing the Morphology, Internal Structure, and Growth Mechanism, J. Phys. Chem., dx.doi.org/10.1021/jp3100206, 2013.
  • 23. Sajjad M, Ullah I, Khan M.I., Khan J., Khan M.Y., Qureshi M.T., Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Results in Physics, https://doi.org/10.1016/j.rinp.2018. 04.010, 2018.
  • 24. Thangeeswari T, George A.T., Kumar A.A., Optical Properties and FTIR Studies of Cobalt Doped ZnO Nanoparticles by Simple Solution Method, Indian Journal of Science and Technology 10.17485/ijst/2016/v9i1/85776, 2016. 25. Bhakta N., Chakrabarti P.K., Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles, Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2019.03.106, 2019.
  • 26. Handore K and et.al., Novel Green Route of Synthesis of ZnO Nanoparticles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes, Journal of Macromolecular Science. Part A: Pure and Applied Chemistry, 10.1080/10601325.2014.967078, 2014.
  • 27. Heiba ZK, Arda L, Mohamed MB, Mostafa NY, Dogan N (2013). Effect of annealing temperature on structural and magnetic properties of Zn0.94Co0.05Cu0.01O. J. Supercond. Nov. Magn. 26: 3487-3493.
  • 28. Li T., Qiu H., Wu P., Wang M., Ma R., Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering. Thin Solid Films, V:515, 13 p.p.3905–3909, 2007.
  • 29. Saeki H., Tabata H., Kawai T., Magnetic and electric properties of Vanadium doped ZnO films. Solid State Communications. 120: 439-443, 2001.
  • 30. Garcia M.A. and et.al., Magnetic properties of ZnO Nanoparticles, Nano Lett., 7 (6): 489–1494, 2007.
  • 31. Adeagbo W.A., Fischer G., Ernst A. Hergert W., Magnetic effects of defect pair formation in ZnO, Journal of Physıcs: Condensed Matter, doi:10.1088/0953- 20 8984/22/43/436002, 2010.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Fatma Sarf 0000-0002-4445-4800

Elif Aşıkuzun 0000-0003-1850-7080

Emin Yakar 0000-0001-7747-953X

Project Number FBD-2017-1321
Publication Date January 30, 2021
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Sarf, F., Aşıkuzun, E., & Yakar, E. (2021). Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO. International Journal of Advances in Engineering and Pure Sciences, 33(1), 47-52. https://doi.org/10.7240/jeps.693143
AMA Sarf F, Aşıkuzun E, Yakar E. Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO. JEPS. January 2021;33(1):47-52. doi:10.7240/jeps.693143
Chicago Sarf, Fatma, Elif Aşıkuzun, and Emin Yakar. “Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO”. International Journal of Advances in Engineering and Pure Sciences 33, no. 1 (January 2021): 47-52. https://doi.org/10.7240/jeps.693143.
EndNote Sarf F, Aşıkuzun E, Yakar E (January 1, 2021) Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO. International Journal of Advances in Engineering and Pure Sciences 33 1 47–52.
IEEE F. Sarf, E. Aşıkuzun, and E. Yakar, “Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO”, JEPS, vol. 33, no. 1, pp. 47–52, 2021, doi: 10.7240/jeps.693143.
ISNAD Sarf, Fatma et al. “Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO”. International Journal of Advances in Engineering and Pure Sciences 33/1 (January 2021), 47-52. https://doi.org/10.7240/jeps.693143.
JAMA Sarf F, Aşıkuzun E, Yakar E. Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO. JEPS. 2021;33:47–52.
MLA Sarf, Fatma et al. “Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 1, 2021, pp. 47-52, doi:10.7240/jeps.693143.
Vancouver Sarf F, Aşıkuzun E, Yakar E. Investigation of Ferromagnetism and Growth Correlation of Transition Metal Doped ZnO. JEPS. 2021;33(1):47-52.