Review
BibTex RIS Cite

Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar

Year 2021, Volume: 33 Issue: 3, 487 - 498, 01.09.2021
https://doi.org/10.7240/jeps.900129

Abstract

Doku kültürü teknikleri, 1900’lü yılların başında uygulanmaya başlanmış ve bu oldukça ümit verici bulunmuştur. Bitkiden alınan tek bir parçadan yeni bitkilerin çok kısa sürede, arzu edilen sayıda, dış şartlara bağımlı olmaksızın üretilebileceği fikri bilim adamlarını heyecanlandırmıştır. Ancak yapılan çalışmalarda her bitki türü için sistemin optimizasyona gerek duyması, bazı genotiplerin doku kültüründe iyi cevap verirken bazılarının gelişimlerinin oldukça kısır kalması, yüksek yapılı bitkilerde ise başarının sağlanamaması bilim adamlarını doku kültürünü farklı amaçlarla kullanma yoluna sevk etmiştir. Bu yollardan biri ve belki de en önemlisi değerli fitokimyasalların doku kültüründe üretimidir. Doku kültüründe gelişen bitkiler çevresel şartlarla sınırlandırılmaz ve uygun bir kültür ortamı sağlanmasıyla istenilen bileşiklerin biyosentezi yapılabilir ve bu bileşiklerin miktarı arttırılabilir. Sekonder ürünlerin doku kültürü ortamında üretilmesiyle arz talep dengesine dayanan, çevresel etkilerden bağımsız üretim sağlanabilir. Sabit kararlılıkta, belli bir standardı olan maddeler üretilebilir. Doğa tahribatı en aza indirilip, daha az arazi kullanımının gerçekleşmesi sağlanabilir. Yeni sekonder ürünlerin eldesi mümkün olabilir. Nesli tükenme tehlikesi altındaki türler korunabilir. Bileşenlerin biyosentez yollarının aydınlatılmasında, değiştirilmesinde, sekonder metabolitlerin üretimi ve çeşitli etkenlerle miktar arttırılmasında, iyi ürün veren türlerin seleksiyonunda bitki doku kültürleri umut vaat etmektedir.

References

  • [1] Bourgaud, F., Gravot, A., Milesi, S. ve Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant science, 161(5), 839-851.
  • [2] Kossel, A. (1891). Ueber die chemische Zusammensetzung der Zelle. Du Bois-Reymond’s Archiv/Arch Anat Physiol Physiol Abt, 278, 181-186.
  • [3] Czapek, F. (1921). Spezielle Biochemie, Biochemie der Pflanzen, vol. 3, G. Fischer Jena, 369.
  • [4] Babaoğlu, M., Gürel, E. ve Özcan, S. (2001). Bitki biyoteknolojisi, doku kültürü ve uygulamaları. Selçuk Üniversitesi Yayınları, Konya.
  • [5] Li, J., Ou-Lee, T. M., Raba, R., Amundson, R. G. ve Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell, 5(2), 171-179.
  • [6] Harborne, J. B. (1999). Classes and functions of secondary products from plants. Chemicals from plants, 1-25.
  • [7] Murch, S. J., Choffe, K. L., Victor, J. M. R., Slimmon, T. Y., Krishnaraj, S. ve Saxena, P. K. (2000). Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John's wort (Hypericum perforatum. cv'Anthos'). Plant Cell Reports, 19(6), 576-581.
  • [8] Dörnenburg, H. ve Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and microbial technology, 17(8), 674-684.
  • [9] Rao, S. R. ve Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153.
  • [10] Ogino, T., Hiraoka, N. ve Tabata, M. (1978). Selection of high nicotine-producing cell lines of tobacco callus by single-cell cloning. Phytochemistry, 17(11), 1907-1910.
  • [11] Dougall, D. K. (1980). Nutrition and metabolism. In'Plant Tissue Culture as a Source of Biochemicals'.(Ed. EJ Staba.) pp. 21-58.
  • [12] Zenk, MH. (1978). The impact of plant cell culture on industry. The International Association of Plant Tissue Culture, 1978. p. 1–14.
  • [13] Matsumoto, T., Ikeda, T., Kanno, N., Kisaki, T. ve Noguchi, M. (1980). Selection of high ubiquinone 10-producing strain of tobacco cultured cells by cell cloning technique. Agricultural and Biological Chemistry, 44(4), 967-969.
  • [14] Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N. ve Qazi, G. N. (2008). Prospecting for camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high-yielding sources of camptothecin and new families of camptothecines. Journal of chromatographic science, 46(4), 362-368.
  • [15] Berlin, J. (1980). Para-fluorophenylalanine resistant cell lines of tobacco. Zeitschrift für Pflanzenphysiologie, 97(4), 317-324.
  • [16] Salgado-Garciglia, R. ve Ochoa-Alejo, N. (1990). Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant cell reports, 8(10), 617-620.
  • [17] Berlin, J., Forche, E., Wray, V., Hammer, J. ve Hösel, W. (1983). Formation of benzophenanthridine alkaloids by suspension cultures of Eschscholtzia californica. Zeitschrift für Naturforschung C, 38(5-6), 346-352.
  • [18] Do, C. B. ve Cormier, F. (1990). Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Reports, 9(3), 143-146.
  • [19] Wang, Y. ve Weathers, P. J. (2007). Sugars proportionately affect artemisinin production. Plant cell reports, 26(7), 1073-1081.
  • [20] Rajasekaran, T., Rajendran, L., Ravishankar, G. A. ve Venkataraman, L. V. (1991). Influence of nutrient stress on pyrethrin production by cultured cells of pyrethrum (Chrysanthemum cinerariaefolium). Current Science, 705-707.
  • [21] Sasse F., K. Knobloch and J. Berlin. (1982). Induction of secondary metabolism in cell suspension cultures of Catharanthus roseus, Nicotiana tabacum and Peganum harmala. Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, Tokyo, 343–4.
  • [22] Nagella, P. ve Murthy, H. N. (2011). Effects of macroelements and nitrogen source on biomass accumulation and withanolide-A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 119-124.
  • [23] Mantell, S.H. and Smith, H. (1984) Cultural factors that influence secondary metabolite accumulation in plant cell and tissue cultures. Plant biotechnology, Cambridge: Cambridge Univ. Press.: 75–108.
  • [24] Zenk, M. H., El–Shagi, H. ve Schulte, U. (1975). Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Medica, 28(S 01), 79-101.
  • [25] Rajendran, L., Ravishankar, G. A., Venkataraman, L. V. ve Prathiba, K. R. (1992). Anthocyanin production in callus cultures of Daucus carota as influenced by nutrient stress and osmoticum. Biotechnology letters, 14(8), 707-712.
  • [26] Mok, M. C., MC, M., & WH, G. (1976). Carotenoid synthesis in tissue cultures of Daucus carota L. Journal of the American Society for Horticultural Science, 1976. 101: 442–9.
  • [27] Seitz, H. U. ve Hinderer, W. (1988). Anthocyanins. Phytochemicals in Plant Cell Cultures, 49-76.
  • [28] Weathers, P. J., Bunk, G. ve McCoy, M. C. (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cellular & Developmental Biology-Plant, 41(1), 47-53.
  • [29] Romagnoli, L. G. ve Knorr, D. (1988). Effects of ferulic acid treatment on growth and flavor development of cultured Vanilla planifolia cells. Food Biotechnology, 2(1), 93-104.
  • [30] Sahai, O. P. ve Shuler, M. L. (1984). Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnology and bioengineering, 26(2), 111-120.
  • [31] Ikeda, T., Matsumoto, T. ve Noguchi, M. (1977). Effects of inorganic nitrogen sources and physical factors on the formation of ubiquinone by tobacco plant cells in suspension culture. Agricultural and Biological Chemistry, 41(7), 1197-1201.
  • [32] Toivonen, L., Laakso, S. ve Rosenqvist, H. (1992). The effect of temperature on hairy root cultures of Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant cell reports, 11(8), 395-399.
  • [33] Yu, K. W., Murthy, H. N., Hahn, E. J. ve Paek, K. Y. (2005). Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochemical Engineering Journal, 23(1), 53-56.
  • [34] Mulder-Krieger, T. H., Verpoorte, R., Svendsen, A. B. ve Scheffer, J. J. C. (1988). Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant cell, tissue and organ culture, 13(2), 85-154.
  • [35] Keskin, N. ve Kunter, B. (2007). Ercis üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Journal of Agricultural Sciences, 13(04), 379-384.
  • [36] Chan, L. K., Koay, S. S., Boey, P. L. ve Bhatt, A. (2010). Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research, 43(1), 127-135.
  • [37] Veliky, I. A. (1977). Effect of pH on tryptophol formation by cultured Ipomoea sp. plant cells. Journal of the New York Entomological Society.
  • [38] Praveen, N. ve Murthy, H. N. (2012). Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Industrial Crops and Products, 35(1), 241-243.
  • [39] Kreis, W. ve Reinhard, E. (1992). 12β-Hydroxylation of digitoxin by suspension-cultured Digitalis lanata cells: Production of digoxin in 20-litre and 300-litre air-lift bioreactors. Journal of biotechnology, 26(2-3), 257-273.
  • [40] Ambid, C. ve Fallot, J. (1981). Role of the gaseous environment on volatile compound production by fruit cell suspensins cultured in vitro. Flavour ’81. Berlin: de Gruyter, 1981. 529–38.
  • [41] Georgiev, M. I., Weber, J. ve Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied microbiology and biotechnology, 83(5), 809-823.
  • [42] Yamada, Y. (1990). Biochemistry of alkaloid production in vitro. Secondary Products from Plant Tissue Culture, 227-242. [43] Baque, M. A., Moh, S. H., Lee, E. J., Zhong, J. J. ve Paek, K. Y. (2012). Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnology Advances, 30(6), 1255-1267.
  • [44] Sivanandhan, G., Selvaraj, N., Ganapathi, A. ve Manickavasagam, M. (2016). Elicitation approaches for withanolide production in hairy root culture of Withania somnifera (L.) Dunal. In Biotechnology of Plant Secondary Metabolism Humana Press, 1-18.
  • [45] Spencer, A., Hamill, J. D., Reynolds, J. ve Rhodes, M. J. C. (1990). Production of terpenes by transformed differentiated shoot cultures of Mentha piperita citrata and M. piperita vulgaris. In Progress in Plant Cellular and Molecular Biology, 619-624.
  • [46] Praveen, N., Naik, P. M., Manohar, S. H., Nayeem, A. ve Murthy, H. N. (2009). In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiologiae Plantarum, 31(4), 723-728.
  • [47] Dandin, V. S. ve Murthy, H. N. (2012). Enhanced in vitro multiplication of Nothapodytes nimmoniana Graham using semisolid and liquid cultures and estimation of camptothecin in the regenerated plants. Acta Physiologiae Plantarum, 34(4), 1381-1386.
  • [48] Stafford, A. (1991). Natural products and metabolites from plants and plant tissue cultures. Plant cell and tissue culture, 124-162.
  • [49] Ketchum, R. E., Gibson, D. M., Croteau, R. B. ve Shuler, M. L. (1999). The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnology and bioengineering, 62(1), 97-105.
  • [50] Zenk, M. H., El-Shagi, H., Arens, H., Stöckigt, J., Weiler, E. W. ve Deus, B. (1977). Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Plant tissue culture and its bio-technological application, 27-43.
  • [51] Akula, R. ve Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731.
  • [52] Murthy, H. N., Kim, Y. S., Park, S. Y. ve Paek, K. Y. (2014). Hypericins: biotechnological production from cell and organ cultures. Applied microbiology and biotechnology, 98(22), 9187-9198.
  • [53] Coste, A., Vlase, L., Halmagyi, A., Deliu, C. ve Coldea, G. (2011). Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture (PCTOC), 106(2), 279-288.
  • [54] Yamaner, Ö. (2011). Hypericum adenotrichum Spach’un doku kültürü eknikleri ile çoğaltılması ve in vitro koşullarda sekonder metabolit değişiminin araştırılması. Doktora Tezi. AMÜ, Fen Bilimleri Enstitüsü, Türkiye.
  • [55] Halder, M., Sarkar, S. ve Jha, S. (2019). Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences, 19(12), 880-895.
  • [56] Wang, C., Wu, J. ve Mei, X. (2001). Enhanced Taxol Production and Release in Taxus chinensisCell Suspension Cultures with Selected Organic Solvents and Sucrose Feeding. Biotechnology progress, 17(1), 89-94.
  • [57] Brodelius, P., Deus, B., Mosbach, K. ve Zenk, M. H. (1979). Immobilized plant cells for the production and transportation of natural products. Febs Letters, 103(1), 93-97.
  • [58] Johnson, T. S., Ravishankar, G. A. ve Venkataraman, L. V. (1996). Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant cell, tissue and organ culture, 44(2), 117-121.
  • [59] Giri, A., Dhingra, V., Giri, C. C., Singh, A., Ward, O. P. ve Narasu, M. L. (2001). Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnology advances, 19(3), 175-199.
  • [60] Ramachandra Rao, S., Tripathi, U. ve Ravishankar, G. A. (2002). Biotransformation of Digitoxin in Cell Cultures of Capsicum frutescens in the Presence of β-cyclodextrin. Biocatalysis and Biotransformation, 20(2), 137-143.
  • [61] Li, W., Koike, K., Asada, Y., Yoshikawa, T. ve Nikaido, T. (2005). Biotransformation of paeonol by Panax ginseng root and cell cultures. Journal of Molecular Catalysis B: Enzymatic, 35(4-6), 117-121.
  • [62] Smart, N. J. ve Fowler, M. W. (1981). Effect of aeration on large-scale cultures of plant cells. Biotechnology Letters, 3(4), 171-176.
  • [63] Zupan, J., Muth, T. R., Draper, O. ve Zambryski, P. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant Journal, 23(1), 11-28.
  • [64] Anand, S. (2010). Various approaches for secondary metabolite production through plant tissue culture. Pharmacia, 1(1), 1-7.
  • [65] Bailey, J. E. (1991). Toward a science of metabolic engineering. Science, 252(5013), 1668-1675.
  • [66] What is chemistry, http://www.whatischemistry.unina.it/it/h.html, (Mart 2021).
  • [67] Pfeiffer, N. (1994). FDA OKs Calgene's Flavr Savr tomato for marketing in supermarkets in the US. Genetic engineering news: GEN (USA).
  • [68] Wongsamuth, R. ve P.M. Doran, Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 1997. 54: p. 401–15.
  • [69] Saito, K., Yamazaki, M. ve Murakoshi, I. (1992). Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. Journal of natural products, 55(2), 149-162.
  • [70] Stöckigt, J. ve Zenk, M. H. (1977). Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. Journal of the Chemical Society, Chemical Communications, (18), 646-648.
  • [71] Songstad, D. D., Kurzt, W. G. W. ve Nessler, C. L. (1991). Tyramine accumulation in Nicotiana tabacum transformed with a chimeric tryptophan decarboxylase gene. Phytochemistry, 30(10), 3245-3246.
  • [72] Chavadej, S., Brisson, N., McNeil, J. N. ve De Luca, V. (1994). Redirection of tryptophan leads to production of low indole glucosinolate canola. Proceedings of the National Academy of Sciences, 91(6), 2166-2170.
  • [73] McKnight, T. D., Roessner, C. A., Devagupta, R., Scott, A. I. ve Nessler, C. L. (1990). Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic acids research, 18(16), 4939.
  • [74] Steffens, J.C., Darel, E. ve Hunt, M.D. (1994). Polyphenoloxidase. Genetic Engineering of Plant Secondary Metabolism, 1994. 275–312.

Applications for Improving Secondary Metabolite Production in Plant Tissue Cultures

Year 2021, Volume: 33 Issue: 3, 487 - 498, 01.09.2021
https://doi.org/10.7240/jeps.900129

Abstract

Tissue culture techniques which started in the early 1900s were found very promising. Scientists were excited about the idea that new plants could be produced from a single piece taken from the plant in a very short time, in the desired number, regardless of external conditions. However, the system needs optimization for each plant species and some genotypes respond well in tissue culture, while the development of some of them remains quite low. Also, the failure to achieve success in higher plants has prompted scientists to use tissue culture for different purposes. One of these ways, and perhaps the most important, is the production of valuable phytochemicals in tissue culture. Plants growing in tissue culture are not limited by environmental conditions, the desired compounds can be biosynthesized, the amount of these compounds can be increased by providing a suitable culture environment. Production based on supply-demand balance and independent of environmental effects can be achieved by tissue culture environment. Substances with constant stability and a certain standard can be produced. Nature destruction can be minimized and less land use can be achieved. It may be possible to obtain new secondary products. The production amount of herbal chemical whose biosynthesis mechanism and intermediate products are known can be increased. Endangered species can be protected. Plant tissue cultures are promising in the elucidation of the biosynthesis pathways of the components, the production of secondary metabolites and increasing the amount of them by various factors.

References

  • [1] Bourgaud, F., Gravot, A., Milesi, S. ve Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant science, 161(5), 839-851.
  • [2] Kossel, A. (1891). Ueber die chemische Zusammensetzung der Zelle. Du Bois-Reymond’s Archiv/Arch Anat Physiol Physiol Abt, 278, 181-186.
  • [3] Czapek, F. (1921). Spezielle Biochemie, Biochemie der Pflanzen, vol. 3, G. Fischer Jena, 369.
  • [4] Babaoğlu, M., Gürel, E. ve Özcan, S. (2001). Bitki biyoteknolojisi, doku kültürü ve uygulamaları. Selçuk Üniversitesi Yayınları, Konya.
  • [5] Li, J., Ou-Lee, T. M., Raba, R., Amundson, R. G. ve Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell, 5(2), 171-179.
  • [6] Harborne, J. B. (1999). Classes and functions of secondary products from plants. Chemicals from plants, 1-25.
  • [7] Murch, S. J., Choffe, K. L., Victor, J. M. R., Slimmon, T. Y., Krishnaraj, S. ve Saxena, P. K. (2000). Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John's wort (Hypericum perforatum. cv'Anthos'). Plant Cell Reports, 19(6), 576-581.
  • [8] Dörnenburg, H. ve Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and microbial technology, 17(8), 674-684.
  • [9] Rao, S. R. ve Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153.
  • [10] Ogino, T., Hiraoka, N. ve Tabata, M. (1978). Selection of high nicotine-producing cell lines of tobacco callus by single-cell cloning. Phytochemistry, 17(11), 1907-1910.
  • [11] Dougall, D. K. (1980). Nutrition and metabolism. In'Plant Tissue Culture as a Source of Biochemicals'.(Ed. EJ Staba.) pp. 21-58.
  • [12] Zenk, MH. (1978). The impact of plant cell culture on industry. The International Association of Plant Tissue Culture, 1978. p. 1–14.
  • [13] Matsumoto, T., Ikeda, T., Kanno, N., Kisaki, T. ve Noguchi, M. (1980). Selection of high ubiquinone 10-producing strain of tobacco cultured cells by cell cloning technique. Agricultural and Biological Chemistry, 44(4), 967-969.
  • [14] Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N. ve Qazi, G. N. (2008). Prospecting for camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high-yielding sources of camptothecin and new families of camptothecines. Journal of chromatographic science, 46(4), 362-368.
  • [15] Berlin, J. (1980). Para-fluorophenylalanine resistant cell lines of tobacco. Zeitschrift für Pflanzenphysiologie, 97(4), 317-324.
  • [16] Salgado-Garciglia, R. ve Ochoa-Alejo, N. (1990). Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant cell reports, 8(10), 617-620.
  • [17] Berlin, J., Forche, E., Wray, V., Hammer, J. ve Hösel, W. (1983). Formation of benzophenanthridine alkaloids by suspension cultures of Eschscholtzia californica. Zeitschrift für Naturforschung C, 38(5-6), 346-352.
  • [18] Do, C. B. ve Cormier, F. (1990). Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Reports, 9(3), 143-146.
  • [19] Wang, Y. ve Weathers, P. J. (2007). Sugars proportionately affect artemisinin production. Plant cell reports, 26(7), 1073-1081.
  • [20] Rajasekaran, T., Rajendran, L., Ravishankar, G. A. ve Venkataraman, L. V. (1991). Influence of nutrient stress on pyrethrin production by cultured cells of pyrethrum (Chrysanthemum cinerariaefolium). Current Science, 705-707.
  • [21] Sasse F., K. Knobloch and J. Berlin. (1982). Induction of secondary metabolism in cell suspension cultures of Catharanthus roseus, Nicotiana tabacum and Peganum harmala. Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, Tokyo, 343–4.
  • [22] Nagella, P. ve Murthy, H. N. (2011). Effects of macroelements and nitrogen source on biomass accumulation and withanolide-A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 119-124.
  • [23] Mantell, S.H. and Smith, H. (1984) Cultural factors that influence secondary metabolite accumulation in plant cell and tissue cultures. Plant biotechnology, Cambridge: Cambridge Univ. Press.: 75–108.
  • [24] Zenk, M. H., El–Shagi, H. ve Schulte, U. (1975). Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Medica, 28(S 01), 79-101.
  • [25] Rajendran, L., Ravishankar, G. A., Venkataraman, L. V. ve Prathiba, K. R. (1992). Anthocyanin production in callus cultures of Daucus carota as influenced by nutrient stress and osmoticum. Biotechnology letters, 14(8), 707-712.
  • [26] Mok, M. C., MC, M., & WH, G. (1976). Carotenoid synthesis in tissue cultures of Daucus carota L. Journal of the American Society for Horticultural Science, 1976. 101: 442–9.
  • [27] Seitz, H. U. ve Hinderer, W. (1988). Anthocyanins. Phytochemicals in Plant Cell Cultures, 49-76.
  • [28] Weathers, P. J., Bunk, G. ve McCoy, M. C. (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cellular & Developmental Biology-Plant, 41(1), 47-53.
  • [29] Romagnoli, L. G. ve Knorr, D. (1988). Effects of ferulic acid treatment on growth and flavor development of cultured Vanilla planifolia cells. Food Biotechnology, 2(1), 93-104.
  • [30] Sahai, O. P. ve Shuler, M. L. (1984). Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnology and bioengineering, 26(2), 111-120.
  • [31] Ikeda, T., Matsumoto, T. ve Noguchi, M. (1977). Effects of inorganic nitrogen sources and physical factors on the formation of ubiquinone by tobacco plant cells in suspension culture. Agricultural and Biological Chemistry, 41(7), 1197-1201.
  • [32] Toivonen, L., Laakso, S. ve Rosenqvist, H. (1992). The effect of temperature on hairy root cultures of Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant cell reports, 11(8), 395-399.
  • [33] Yu, K. W., Murthy, H. N., Hahn, E. J. ve Paek, K. Y. (2005). Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochemical Engineering Journal, 23(1), 53-56.
  • [34] Mulder-Krieger, T. H., Verpoorte, R., Svendsen, A. B. ve Scheffer, J. J. C. (1988). Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant cell, tissue and organ culture, 13(2), 85-154.
  • [35] Keskin, N. ve Kunter, B. (2007). Ercis üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Journal of Agricultural Sciences, 13(04), 379-384.
  • [36] Chan, L. K., Koay, S. S., Boey, P. L. ve Bhatt, A. (2010). Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research, 43(1), 127-135.
  • [37] Veliky, I. A. (1977). Effect of pH on tryptophol formation by cultured Ipomoea sp. plant cells. Journal of the New York Entomological Society.
  • [38] Praveen, N. ve Murthy, H. N. (2012). Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Industrial Crops and Products, 35(1), 241-243.
  • [39] Kreis, W. ve Reinhard, E. (1992). 12β-Hydroxylation of digitoxin by suspension-cultured Digitalis lanata cells: Production of digoxin in 20-litre and 300-litre air-lift bioreactors. Journal of biotechnology, 26(2-3), 257-273.
  • [40] Ambid, C. ve Fallot, J. (1981). Role of the gaseous environment on volatile compound production by fruit cell suspensins cultured in vitro. Flavour ’81. Berlin: de Gruyter, 1981. 529–38.
  • [41] Georgiev, M. I., Weber, J. ve Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied microbiology and biotechnology, 83(5), 809-823.
  • [42] Yamada, Y. (1990). Biochemistry of alkaloid production in vitro. Secondary Products from Plant Tissue Culture, 227-242. [43] Baque, M. A., Moh, S. H., Lee, E. J., Zhong, J. J. ve Paek, K. Y. (2012). Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnology Advances, 30(6), 1255-1267.
  • [44] Sivanandhan, G., Selvaraj, N., Ganapathi, A. ve Manickavasagam, M. (2016). Elicitation approaches for withanolide production in hairy root culture of Withania somnifera (L.) Dunal. In Biotechnology of Plant Secondary Metabolism Humana Press, 1-18.
  • [45] Spencer, A., Hamill, J. D., Reynolds, J. ve Rhodes, M. J. C. (1990). Production of terpenes by transformed differentiated shoot cultures of Mentha piperita citrata and M. piperita vulgaris. In Progress in Plant Cellular and Molecular Biology, 619-624.
  • [46] Praveen, N., Naik, P. M., Manohar, S. H., Nayeem, A. ve Murthy, H. N. (2009). In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiologiae Plantarum, 31(4), 723-728.
  • [47] Dandin, V. S. ve Murthy, H. N. (2012). Enhanced in vitro multiplication of Nothapodytes nimmoniana Graham using semisolid and liquid cultures and estimation of camptothecin in the regenerated plants. Acta Physiologiae Plantarum, 34(4), 1381-1386.
  • [48] Stafford, A. (1991). Natural products and metabolites from plants and plant tissue cultures. Plant cell and tissue culture, 124-162.
  • [49] Ketchum, R. E., Gibson, D. M., Croteau, R. B. ve Shuler, M. L. (1999). The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnology and bioengineering, 62(1), 97-105.
  • [50] Zenk, M. H., El-Shagi, H., Arens, H., Stöckigt, J., Weiler, E. W. ve Deus, B. (1977). Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Plant tissue culture and its bio-technological application, 27-43.
  • [51] Akula, R. ve Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731.
  • [52] Murthy, H. N., Kim, Y. S., Park, S. Y. ve Paek, K. Y. (2014). Hypericins: biotechnological production from cell and organ cultures. Applied microbiology and biotechnology, 98(22), 9187-9198.
  • [53] Coste, A., Vlase, L., Halmagyi, A., Deliu, C. ve Coldea, G. (2011). Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture (PCTOC), 106(2), 279-288.
  • [54] Yamaner, Ö. (2011). Hypericum adenotrichum Spach’un doku kültürü eknikleri ile çoğaltılması ve in vitro koşullarda sekonder metabolit değişiminin araştırılması. Doktora Tezi. AMÜ, Fen Bilimleri Enstitüsü, Türkiye.
  • [55] Halder, M., Sarkar, S. ve Jha, S. (2019). Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences, 19(12), 880-895.
  • [56] Wang, C., Wu, J. ve Mei, X. (2001). Enhanced Taxol Production and Release in Taxus chinensisCell Suspension Cultures with Selected Organic Solvents and Sucrose Feeding. Biotechnology progress, 17(1), 89-94.
  • [57] Brodelius, P., Deus, B., Mosbach, K. ve Zenk, M. H. (1979). Immobilized plant cells for the production and transportation of natural products. Febs Letters, 103(1), 93-97.
  • [58] Johnson, T. S., Ravishankar, G. A. ve Venkataraman, L. V. (1996). Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant cell, tissue and organ culture, 44(2), 117-121.
  • [59] Giri, A., Dhingra, V., Giri, C. C., Singh, A., Ward, O. P. ve Narasu, M. L. (2001). Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnology advances, 19(3), 175-199.
  • [60] Ramachandra Rao, S., Tripathi, U. ve Ravishankar, G. A. (2002). Biotransformation of Digitoxin in Cell Cultures of Capsicum frutescens in the Presence of β-cyclodextrin. Biocatalysis and Biotransformation, 20(2), 137-143.
  • [61] Li, W., Koike, K., Asada, Y., Yoshikawa, T. ve Nikaido, T. (2005). Biotransformation of paeonol by Panax ginseng root and cell cultures. Journal of Molecular Catalysis B: Enzymatic, 35(4-6), 117-121.
  • [62] Smart, N. J. ve Fowler, M. W. (1981). Effect of aeration on large-scale cultures of plant cells. Biotechnology Letters, 3(4), 171-176.
  • [63] Zupan, J., Muth, T. R., Draper, O. ve Zambryski, P. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant Journal, 23(1), 11-28.
  • [64] Anand, S. (2010). Various approaches for secondary metabolite production through plant tissue culture. Pharmacia, 1(1), 1-7.
  • [65] Bailey, J. E. (1991). Toward a science of metabolic engineering. Science, 252(5013), 1668-1675.
  • [66] What is chemistry, http://www.whatischemistry.unina.it/it/h.html, (Mart 2021).
  • [67] Pfeiffer, N. (1994). FDA OKs Calgene's Flavr Savr tomato for marketing in supermarkets in the US. Genetic engineering news: GEN (USA).
  • [68] Wongsamuth, R. ve P.M. Doran, Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 1997. 54: p. 401–15.
  • [69] Saito, K., Yamazaki, M. ve Murakoshi, I. (1992). Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. Journal of natural products, 55(2), 149-162.
  • [70] Stöckigt, J. ve Zenk, M. H. (1977). Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. Journal of the Chemical Society, Chemical Communications, (18), 646-648.
  • [71] Songstad, D. D., Kurzt, W. G. W. ve Nessler, C. L. (1991). Tyramine accumulation in Nicotiana tabacum transformed with a chimeric tryptophan decarboxylase gene. Phytochemistry, 30(10), 3245-3246.
  • [72] Chavadej, S., Brisson, N., McNeil, J. N. ve De Luca, V. (1994). Redirection of tryptophan leads to production of low indole glucosinolate canola. Proceedings of the National Academy of Sciences, 91(6), 2166-2170.
  • [73] McKnight, T. D., Roessner, C. A., Devagupta, R., Scott, A. I. ve Nessler, C. L. (1990). Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic acids research, 18(16), 4939.
  • [74] Steffens, J.C., Darel, E. ve Hunt, M.D. (1994). Polyphenoloxidase. Genetic Engineering of Plant Secondary Metabolism, 1994. 275–312.
There are 73 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Neşe Eray Vuran 0000-0001-6387-1493

Musa Türker 0000-0003-3195-1119

Publication Date September 1, 2021
Published in Issue Year 2021 Volume: 33 Issue: 3

Cite

APA Eray Vuran, N., & Türker, M. (2021). Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar. International Journal of Advances in Engineering and Pure Sciences, 33(3), 487-498. https://doi.org/10.7240/jeps.900129
AMA Eray Vuran N, Türker M. Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar. JEPS. September 2021;33(3):487-498. doi:10.7240/jeps.900129
Chicago Eray Vuran, Neşe, and Musa Türker. “Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar”. International Journal of Advances in Engineering and Pure Sciences 33, no. 3 (September 2021): 487-98. https://doi.org/10.7240/jeps.900129.
EndNote Eray Vuran N, Türker M (September 1, 2021) Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar. International Journal of Advances in Engineering and Pure Sciences 33 3 487–498.
IEEE N. Eray Vuran and M. Türker, “Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar”, JEPS, vol. 33, no. 3, pp. 487–498, 2021, doi: 10.7240/jeps.900129.
ISNAD Eray Vuran, Neşe - Türker, Musa. “Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar”. International Journal of Advances in Engineering and Pure Sciences 33/3 (September 2021), 487-498. https://doi.org/10.7240/jeps.900129.
JAMA Eray Vuran N, Türker M. Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar. JEPS. 2021;33:487–498.
MLA Eray Vuran, Neşe and Musa Türker. “Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 3, 2021, pp. 487-98, doi:10.7240/jeps.900129.
Vancouver Eray Vuran N, Türker M. Bitki Doku Kültürlerinde Sekonder Metabolit Miktarını Arttırmaya Yönelik Uygulamalar. JEPS. 2021;33(3):487-98.