It is envisioned that biomedical swarms are going to be used for therapeutic operations in the future. The utilization of a single robot in live tissue is not practical because of the limited volume. In contrast, a large group of microrobots can deliver a useful amount of potent chemicals to the targeted tissue. In this simulation study, a trio of magnetotactic bacteria as a task-force, Magnetospirillum Gryphiswaldense MSR-1, is maneuvered via adaptive micro-motion control through an external magnetic field. The magnetic field is induced by a single permanent magnet positioned by an open kinematic chain. The coupled dynamics of this small group in the human synovial tissue is simulated with actual magnetic and fluidic properties of the synovial liquid. The common center of mass is tracked by the equation of motion. The overall hydrodynamic interaction amongst all three bacteria is modeled within a synovial medium confined with flat surfaces. A bilateral control scheme is implemented on top of this coupled model. The position of the common center of mass is used as the reference point to the end-effector of the robotic arm. The orientation of the magnetic field is rotated to change the heading of the bacterial-group in an addressable manner. It has been numerically observed that controlling the common swimming direction of multiple bacteria is fairly possible. Results are presented via the rigid-body motion of the robotic task-force as well as the fluidic and magnetic force-components acting on the bacteria along with the bilateral control effort in all axes.
The author would like to thank the chairs and committees of the ASYU 2020 - Innovations in Intelligent Systems and Applications Conference.
References
Agrahari, V., Agrahari, V., Chou, M.-L., Chew, C. H., Noll, J., & Burnouf, T. (2020). Intelligent Micro-/Nanorobots as Drug and Cell Carrier Devices for Biomedical Therapeutic Advancement: Promising Development Opportunities and Translational Challenges. Biomaterials, 260, 120163. https://doi.org/10.1016/j.biomaterials.2020.120163
Cabanach, P., Pena‐Francesch, A., Sheehan, D., Bozuyuk, U., Yasa, O., Borros, S., & Sitti, M. (2020). Microrobots: Zwitterionic 3D‐Printed Non‐Immunogenic Stealth Microrobots. Advanced Materials, 32(42), 2070312. https://doi.org/10.1002/adma.202070312
Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hošovský, A., Iacovacci, V., Khalil, I. S. M., Magdanz, V., Misra, S., Pawashe, C., Rashidifar, R., Soto‐Rodriguez, P. E. D., Fekete, Z., & Jafari, A. (2020). Magnetic Actuation Methods in Bio/Soft Robotics. Advanced Functional Materials, 2005137. https://doi.org/10.1002/adfm.202005137
Field, R. D., Anandakumaran, P. N., & Sia, S. K. (2019). Soft medical microrobots: Design components and system integration. Applied Physics Reviews, 6(4), 041305. https://doi.org/10.1063/1.5124007
Ghosh, A., Xu, W., Gupta, N., & Gracias, D. H. (2020). Active Matter Therapeutics. Nano Today, 31, 100836. https://doi.org/10.1016/j.nantod.2019.100836
Gunduz, S., Albadawi, H., & Oklu, R. (2020). Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Advanced Intelligent Systems, 2000181. https://doi.org/10.1002/aisy.202000181
Hu, M., Ge, X., Chen, X., Mao, W., Qian, X., & Yuan, W.-E. (2020). Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics, 12(7), 665. https://doi.org/10.3390/pharmaceutics12070665
Hunter, E. E., Brink, E. W., Steager, E. B., & Kumar, V. (2018). Toward Soft Micro Bio Robots for Cellular and Chemical Delivery. IEEE Robotics and Automation Letters, 3(3), 1592–1599. https://doi.org/10.1109/lra.2018.2800118
Soto, F., Wang, J., Ahmed, R., & Demirci, U. (2020). Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 7(21), 2002203. https://doi.org/10.1002/advs.202002203
Wang, J., Dong, R., Wu, H., Cai, Y., & Ren, B. (2019). A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy. Nano-Micro Letters, 12(1), 1–19. https://doi.org/10.1007/s40820-019-0350-5
Bogue, R. (2008). The Development of Medical Microrobots: A Review of Progress. Industrial Robotics, 35(4), 294-299. https://doi.org/10.1108/01439910810876373
Felfoul, O., Martel, S. (2013). Assessment of Navigation Control Strategy for Magnetotactic Bacteria in Microchannel: Toward Targeting Solid Tumors. Biomedical Microdevices, 15(6), 1015-1024. https://doi.org/10.1007/s10544-013-9794-4
Yasa, C., Tabak, A. F., Yasa, O., Ceylan, H., Sitti, m. (2019). 3D-Printed Microrobotic Transporters with Recapitulated Stem Cell Niche for Programmable and Active Drug Delivery. Advanced Functional Materials, 29(17), 1808992. https://doi.org/10.1002/adfm.201808992
Qiu, F., Nelson, B. J. (2015). Magnetic Helical Micro- and Nanorobots: Toward Biomedical Applications. Engineering, 1(1), 21-26. https://doi.org/10.15302/J-ENG-2015005
Ghosh, A., Fischer, P. (2009). Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters, 9(6), 2243–2245. https://doi.org/10.1021/nl900186w
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., Bibette, J. (2005) Microscopic Artificial Swimmer, Nature, 437, 862-865. https://doi.org/10.1038/nature04090
Williams, B. J., Anand, S. V., Rajagopalan, J., Saif, M. T. A. (2014). A Self-Propelled Biohybrid Swimmer at Low Reynolds Number, Nature Communications, 5, 3081. https://doi.org/10.1038/ncomms4081
Xiong, X., Lidstrom, M. E., Parviz, B. A. (2007). Microorganisms for MEMS. Journal of Microelectromechanical Systems, 16(2), 429-444. https://doi.org/10.1109/JMEMS.2006.885851
Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti M. (2018). Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Science Robotics, 3(17), eaar4423. https://doi.org/10.1126/scirobotics.aar4423
Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A.-M., & Sitti, M. (2020). Elucidating the Interaction Dynamics Between Microswimmer Body and Immune System for Medical Microrobots. Science Robotics, 5(43), eaaz3867. https://doi.org/10.1126/scirobotics.aaz3867
Park, H., & Park, K. (1996). Biocompatibility Issues of Implantable Drug Delivery Systems. Pharmaceutical Research, 13(12), 1770–1776. https://doi.org/10.1023/a:1016012520276
Horie, M., Fujita, K., Kato, H., Endoh, S., Nishio, K., Komaba, L. K., Nakamura, A., Miyauchi, A., Kinugasa, S., Hagihara, Y., Niki, E., Yoshida, Y., & Iwahashi, H. (2012). Association of the Physical and Chemical Properties and the Cytotoxicity of Metal Oxide Nanoparticles: Metal Ion Release, Adsorption Ability and Specific Surface Area. Metallomics, 4(4), 350. https://doi.org/10.1039/c2mt20016c
Ceylan, H., Yasa, I. C., Tabak, A. F., Giltinan, J., Sitti, M. (2019). 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano, 13(3), 3353–3362. https://doi.org/10.1021/acsnano.8b09233
Uenoyama, A., Miyata, M. (2005). Gliding Ghosts of Mycoplasma Mobile. Proceedings of the National Academy of Sciences USA, 102(36), 12754-12758. https://doi.org/10.1073/pnas.0506114102
Patiño, T., Feiner-Gracia, N., Arqué, X., Miguel-López, A., Jannasch, A., Stumpp, T., Schäffer, E., Albertazzi, L., & Sánchez, S. (2018). Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. Journal of the American Chemical Society, 140(25), 7896–7903. https://doi.org/10.1021/jacs.8b03460
Sun, H. C. M., Liao, P., Wei, T., Zhang, L., & Sun, D. (2020). Magnetically Powered Biodegradable Microswimmers. Micromachines, 11(4), 404. https://doi.org/10.3390/mi11040404
Go, G., Jeong, S.-G., Yoo, A., Han, J., Kang, B., Kim, S., Nguyen, K. T., Jin, Z., Kim, C.-S., Seo, Y. R., Kang, J. Y., Na, J. Y., Song, E. K., Jeong, Y., Seon, J. K., Park, J.-O., & Choi, E. (2020). Human Adipose–Derived Mesenchymal Stem Cell–Based Medical Microrobot System for Knee Cartilage Regeneration In Vivo. Science Robotics, 5(38), eaay6626. https://doi.org/10.1126/scirobotics.aay6626
Tabak, A. F. (2020). Bilateral Control Simulations for a Pair of Magnetically-Coupled Robotic Arm and Bacterium for In Vivo Applications. Journal of Micro-Bio Robotics, 16(2), 199–214. https://doi.org/10.1007/s12213-020-00138-z
Ahmed, D., Sukhov, A., Hauri, D., Rodrigue, D., Maranta, G., Harting, J., & Nelson, B. J. (2021). Bioinspired Acousto-Magnetic Microswarm Robots with Upstream Motility. Nature Machine Intelligence, 1. https://doi.org/10.1038/s42256-020-00275-x
Dong, X., & Sitti, M. (2020). Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms. The International Journal of Robotics Research, 39(5), 617–638. https://doi.org/10.1177/0278364920903107
Keya, J. J., Kabir, A. M. R., Inoue, D., Sada, K., Hess, H., Kuzuya, A., & Kakugo, A. (2018). Control of Swarming of Molecular Robots. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-30187-1
Mirzakhanloo, M., & Alam, M.-R. (2020). Stealthy Movements and Concealed Swarms of Swimming micro-robots. Physics of Fluids, 32(7), 071901. https://doi.org/10.1063/5.0012984
Morozov, K. I., & Leshansky, A. M. (2020). Towards Focusing of a Swarm of Magnetic Micro/Nanomotors. Physical Chemistry Chemical Physics, 22(28), 16407–16420. https://doi.org/10.1039/d0cp01514h
Servant, A., Qiu, F., Mazza, M., Kostarelos, K., & Nelson, B. J. (2015). Controlled In Vivo Swimming of a Swarm of Bacteria‐Like Microrobotic Flagella. Advanced Materials, 27(19), 2981–2988. https://doi.org/10.1002/adma.201404444
Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E., Zhang, X., & Wang, J. (2015). Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society, 137(6), 2163–2166. https://doi.org/10.1021/ja511012v
Yousefi, M., & Nejat Pishkenari, H. (2021). Independent Position Xontrol of Two Identical Magnetic Microrobots in a Plane Using Rotating Permanent Magnets. Journal of Micro-Bio Robotics, 1–9. https://doi.org/10.1007/s12213-021-00143-w
Johnson, B. V., Esantsi, N., & Cappelleri, D. J. (2020). Design of the μMAZE Platform and Microrobots for Independent Control and Micromanipulation Tasks. IEEE Robotics and Automation Letters, 5(4), 5677–5684. https://doi.org/10.1109/lra.2020.3010210
Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., & Sitti, M. (2018). Independent Actuation of Two-Tailed Microrobots. IEEE Robotics and Automation Letters, 3(3), 1703–1710. https://doi.org/10.1109/lra.2018.2801793
Khalil, I. S. M., Pichel, M. P., Abelmann, L., & Misra, S. (2013). Closed-loop control of magnetotactic bacteria. The International Journal of Robotics Research, 32(6), 637–649. https://doi.org/10.1177/0278364913479412
Khalil, I. S. M., Tabak, A. F., Hageman, T., Ewis, M., Pichel, M., Mitwally, M. E., El-Din, N. S., Abelmann, L., & Sitti, M. (2017). Near-surface effects on the controlled motion of magnetotactic bacteria. 2017 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra.2017.7989705
Tabak, A. F. (2020). Motion Control for Biohybrid Multiscale Robots. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). https://doi.org/10.1109/asyu50717.2020.9259857
Tabak, A. F. (2020). Adaptive Motion Control of Modified E. Coli. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). https://doi.org/10.1109/hora49412.2020.9152603
Tabak, A. F. (2020). A Simulated Control Method for a Magnetically-Coupled Bacterium and Robotic Arm. 2020 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). https://doi.org/10.1109/marss49294.2020.9307851
Tabak, A. F. (2020). Simulated Bilateral Motion Control of a Magneto-Tactic Bacterium via an Open Kinematic Chain. 2020 17th International Conference on Ubiquitous Robots (UR). https://doi.org/10.1109/ur49135.2020.9144834
Tabak, A. F. (2020). Independent Joint Control Simulations on Adaptive Maneuvering of a Magnetotactic Bacterium via a Single Permanent Magnet. European Journal of Science and Technology, 50–59. https://doi.org/10.31590/ejosat.818986
Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.2895337
Maxon Motor Product Catalog. Https://Www.Maxongroup.Com. Retrieved February 13, 2021, from https://www.maxongroup.com/maxon/view/product/397172
Tabak, A. F. (2018). Hydrodynamic Impedance of Bacteria and Bacteria-Inspired Micro-Swimmers: A New Strategy to Predict Power Consumption of Swimming Micro-Robots for Real-Time Applications. Advanced Theory and Simulations, 1(4), 1700013. https://doi.org/10.1002/adts.201700013
Brennen, C., & Winet, H. (1977). Fluid Mechanics of Propulsion by Cilia and Flagella. Annual Review of Fluid Mechanics, 9(1), 339–398. https://doi.org/10.1146/annurev.fl.09.010177.002011
Ishikawa, T., Sekiya, G., Imai, Y., & Yamaguchi, T. (2007). Hydrodynamic Interactions between Two Swimming Bacteria. Biophysical Journal, 93(6), 2217–2225. https://doi.org/10.1529/biophysj.107.110254
Spong, M. W., & Vidyasagar, M. (1989). Robot Dynamics and Control (1st ed.). Wiley.
Mazzucco, D., McKinley, G., Scott, R. D., & Spector, M. (2002). Rheology of Joint Fluid in Total Knee Arthroplasty Patients. Journal of Orthopaedic Research, 20(6), 1157–1163. https://doi.org/10.1016/s0736-0266(02)00050-5
Smith, A. M., Fleming, L., Wudebwe, U., Bowen, J., & Grover, L. M. (2014). Development of a Synovial Fluid Analogue with Bio-Relevant Rheology for Wear Testing of Orthopaedic Implants. Journal of the Mechanical Behavior of Biomedical Materials, 32, 177–184. https://doi.org/10.1016/j.jmbbm.2013.12.009
Lauga, E., DiLuzio, W. R., Whitesides, G. M., & Stone, H. A. (2006). Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 90(2), 400–412. https://doi.org/10.1529/biophysj.105.069401
Eager, D., Pendrill, A.-M., & Reistad, N. (2016). Beyond Velocity and Acceleration: Jerk, Snap and Higher Derivatives. European Journal of Physics, 37(6), 065008. https://doi.org/10.1088/0143-0807/37/6/065008
Ghosh, A., & Fischer, P. (2009). Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters, 9(6), 2243–2245. https://doi.org/10.1021/nl900186w
Goldfriend, T., Diamant, H., & Witten, T. A. (2015). Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape. I. Effect on Alignment. Physics of Fluids, 27(12), 123303. https://doi.org/10.1063/1.4936894
Goldfriend, T., Diamant, H., & Witten, T. A. (2016). Hydrodynamic Interactions between two Forced Objects of Arbitrary Shape. II. Relative Translation. Physical Review E, 93(4), 042609. https://doi.org/10.1103/physreve.93.042609
Süreksiz Referans Sinyalleri ile İnsan Sinovyal Sıvısında Birden Fazla Biyohibrit Mikrorobotun Hareket Kontrolü için Benzetim Çalışmaları
Year 2021,
Volume: 33 - ASYU 2020 Özel Sayısı, 1 - 9, 30.12.2021
Gelecekte mikro robotik sürülerin medikal operasyonlar için kullanılması öngörülmektedir. Canlı dokuda tek bir mikro robotun kullanılması, sınırlı hacim nedeniyle pratik değildir. Ancak, kalabalık bir mikro robot grubu, hedeflenen dokuya yararlı miktarda faydalı kimyasallar iletebilir. Bu simülasyon çalışmasında, bir görev gücü olarak seçilen üç manyetotaktik bakterinin (Magnetospirillum Gryphiswaldense MSR-1) harici bir manyetik alan aracılığıyla adaptif mikro-hareket kontrol performansı araştırılmıştır. Manyetik alan, üç serbestlik dereceli açık bir kinematik zincir tarafından konumlandırılan tek bir doğal Neodimyum mıknatıs yardımı ile oluşturulur. Açık kinematik zincirin her ekseninde adanmış bir doğru akım (DC) motoru bulunmaktadır. İnsan sinovyal ekleminde hareket eden bu küçük bakteri grubunun katı cisim dinamikleri, sinovyal sıvının gerçek manyetik ve akışkan özellikleri üzerinden simüle edilir. Mikro robotların ortak kütle merkezi, hareket denklemi ile izlenir. Üç bakteri arasında hareket sırasında ortaya çıkan çapraz hidrodinamik etkileşim, sinovyal sıvı sınırları içinde modellenmiştir. Ortaya çıkan sistem dinamiklerinin üstüne çift yanlı bir adaptif kontrol yaklaşımı ile referans sinyali uygulanmaktadır. Ortak kütle merkezinin konumu, açık kinematik zincirin uç efektörüne referans noktası olarak geri beslenmektedir. Manyetik alanın yönü, bakteri grubunun yönünü adreslenebilir bir şekilde değiştirmek için kullanılmaktadır. Üç bakteriden oluşan bu görev gücünün ortak yüzme yönünü, sinovyal sıvı içerisinde ayrık kontrol sinyalleri ve adaptif kontrol çalışması ile idare etmenin kısmen mümkün olduğu, farklı referans fonksiyonları yardımı ile, sayısal olarak gözlenmiştir. Sonuçlar, üç bakteriden oluşan bu robotik görev gücünün katı cisim hareketi ile bakterilere etki eden akışkan ve manyetik kuvvet bileşenlerinin yanı sıra tüm eksenlerdeki çift yanlı kontrol çabasıyla, yani üretilen kontrol sinyalleri ve DC motorlara uygulanan voltaj değerleri ile birlikte, sunulmuştur.
Agrahari, V., Agrahari, V., Chou, M.-L., Chew, C. H., Noll, J., & Burnouf, T. (2020). Intelligent Micro-/Nanorobots as Drug and Cell Carrier Devices for Biomedical Therapeutic Advancement: Promising Development Opportunities and Translational Challenges. Biomaterials, 260, 120163. https://doi.org/10.1016/j.biomaterials.2020.120163
Cabanach, P., Pena‐Francesch, A., Sheehan, D., Bozuyuk, U., Yasa, O., Borros, S., & Sitti, M. (2020). Microrobots: Zwitterionic 3D‐Printed Non‐Immunogenic Stealth Microrobots. Advanced Materials, 32(42), 2070312. https://doi.org/10.1002/adma.202070312
Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hošovský, A., Iacovacci, V., Khalil, I. S. M., Magdanz, V., Misra, S., Pawashe, C., Rashidifar, R., Soto‐Rodriguez, P. E. D., Fekete, Z., & Jafari, A. (2020). Magnetic Actuation Methods in Bio/Soft Robotics. Advanced Functional Materials, 2005137. https://doi.org/10.1002/adfm.202005137
Field, R. D., Anandakumaran, P. N., & Sia, S. K. (2019). Soft medical microrobots: Design components and system integration. Applied Physics Reviews, 6(4), 041305. https://doi.org/10.1063/1.5124007
Ghosh, A., Xu, W., Gupta, N., & Gracias, D. H. (2020). Active Matter Therapeutics. Nano Today, 31, 100836. https://doi.org/10.1016/j.nantod.2019.100836
Gunduz, S., Albadawi, H., & Oklu, R. (2020). Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Advanced Intelligent Systems, 2000181. https://doi.org/10.1002/aisy.202000181
Hu, M., Ge, X., Chen, X., Mao, W., Qian, X., & Yuan, W.-E. (2020). Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics, 12(7), 665. https://doi.org/10.3390/pharmaceutics12070665
Hunter, E. E., Brink, E. W., Steager, E. B., & Kumar, V. (2018). Toward Soft Micro Bio Robots for Cellular and Chemical Delivery. IEEE Robotics and Automation Letters, 3(3), 1592–1599. https://doi.org/10.1109/lra.2018.2800118
Soto, F., Wang, J., Ahmed, R., & Demirci, U. (2020). Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 7(21), 2002203. https://doi.org/10.1002/advs.202002203
Wang, J., Dong, R., Wu, H., Cai, Y., & Ren, B. (2019). A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy. Nano-Micro Letters, 12(1), 1–19. https://doi.org/10.1007/s40820-019-0350-5
Bogue, R. (2008). The Development of Medical Microrobots: A Review of Progress. Industrial Robotics, 35(4), 294-299. https://doi.org/10.1108/01439910810876373
Felfoul, O., Martel, S. (2013). Assessment of Navigation Control Strategy for Magnetotactic Bacteria in Microchannel: Toward Targeting Solid Tumors. Biomedical Microdevices, 15(6), 1015-1024. https://doi.org/10.1007/s10544-013-9794-4
Yasa, C., Tabak, A. F., Yasa, O., Ceylan, H., Sitti, m. (2019). 3D-Printed Microrobotic Transporters with Recapitulated Stem Cell Niche for Programmable and Active Drug Delivery. Advanced Functional Materials, 29(17), 1808992. https://doi.org/10.1002/adfm.201808992
Qiu, F., Nelson, B. J. (2015). Magnetic Helical Micro- and Nanorobots: Toward Biomedical Applications. Engineering, 1(1), 21-26. https://doi.org/10.15302/J-ENG-2015005
Ghosh, A., Fischer, P. (2009). Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters, 9(6), 2243–2245. https://doi.org/10.1021/nl900186w
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., Bibette, J. (2005) Microscopic Artificial Swimmer, Nature, 437, 862-865. https://doi.org/10.1038/nature04090
Williams, B. J., Anand, S. V., Rajagopalan, J., Saif, M. T. A. (2014). A Self-Propelled Biohybrid Swimmer at Low Reynolds Number, Nature Communications, 5, 3081. https://doi.org/10.1038/ncomms4081
Xiong, X., Lidstrom, M. E., Parviz, B. A. (2007). Microorganisms for MEMS. Journal of Microelectromechanical Systems, 16(2), 429-444. https://doi.org/10.1109/JMEMS.2006.885851
Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti M. (2018). Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Science Robotics, 3(17), eaar4423. https://doi.org/10.1126/scirobotics.aar4423
Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A.-M., & Sitti, M. (2020). Elucidating the Interaction Dynamics Between Microswimmer Body and Immune System for Medical Microrobots. Science Robotics, 5(43), eaaz3867. https://doi.org/10.1126/scirobotics.aaz3867
Park, H., & Park, K. (1996). Biocompatibility Issues of Implantable Drug Delivery Systems. Pharmaceutical Research, 13(12), 1770–1776. https://doi.org/10.1023/a:1016012520276
Horie, M., Fujita, K., Kato, H., Endoh, S., Nishio, K., Komaba, L. K., Nakamura, A., Miyauchi, A., Kinugasa, S., Hagihara, Y., Niki, E., Yoshida, Y., & Iwahashi, H. (2012). Association of the Physical and Chemical Properties and the Cytotoxicity of Metal Oxide Nanoparticles: Metal Ion Release, Adsorption Ability and Specific Surface Area. Metallomics, 4(4), 350. https://doi.org/10.1039/c2mt20016c
Ceylan, H., Yasa, I. C., Tabak, A. F., Giltinan, J., Sitti, M. (2019). 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano, 13(3), 3353–3362. https://doi.org/10.1021/acsnano.8b09233
Uenoyama, A., Miyata, M. (2005). Gliding Ghosts of Mycoplasma Mobile. Proceedings of the National Academy of Sciences USA, 102(36), 12754-12758. https://doi.org/10.1073/pnas.0506114102
Patiño, T., Feiner-Gracia, N., Arqué, X., Miguel-López, A., Jannasch, A., Stumpp, T., Schäffer, E., Albertazzi, L., & Sánchez, S. (2018). Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. Journal of the American Chemical Society, 140(25), 7896–7903. https://doi.org/10.1021/jacs.8b03460
Sun, H. C. M., Liao, P., Wei, T., Zhang, L., & Sun, D. (2020). Magnetically Powered Biodegradable Microswimmers. Micromachines, 11(4), 404. https://doi.org/10.3390/mi11040404
Go, G., Jeong, S.-G., Yoo, A., Han, J., Kang, B., Kim, S., Nguyen, K. T., Jin, Z., Kim, C.-S., Seo, Y. R., Kang, J. Y., Na, J. Y., Song, E. K., Jeong, Y., Seon, J. K., Park, J.-O., & Choi, E. (2020). Human Adipose–Derived Mesenchymal Stem Cell–Based Medical Microrobot System for Knee Cartilage Regeneration In Vivo. Science Robotics, 5(38), eaay6626. https://doi.org/10.1126/scirobotics.aay6626
Tabak, A. F. (2020). Bilateral Control Simulations for a Pair of Magnetically-Coupled Robotic Arm and Bacterium for In Vivo Applications. Journal of Micro-Bio Robotics, 16(2), 199–214. https://doi.org/10.1007/s12213-020-00138-z
Ahmed, D., Sukhov, A., Hauri, D., Rodrigue, D., Maranta, G., Harting, J., & Nelson, B. J. (2021). Bioinspired Acousto-Magnetic Microswarm Robots with Upstream Motility. Nature Machine Intelligence, 1. https://doi.org/10.1038/s42256-020-00275-x
Dong, X., & Sitti, M. (2020). Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms. The International Journal of Robotics Research, 39(5), 617–638. https://doi.org/10.1177/0278364920903107
Keya, J. J., Kabir, A. M. R., Inoue, D., Sada, K., Hess, H., Kuzuya, A., & Kakugo, A. (2018). Control of Swarming of Molecular Robots. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-30187-1
Mirzakhanloo, M., & Alam, M.-R. (2020). Stealthy Movements and Concealed Swarms of Swimming micro-robots. Physics of Fluids, 32(7), 071901. https://doi.org/10.1063/5.0012984
Morozov, K. I., & Leshansky, A. M. (2020). Towards Focusing of a Swarm of Magnetic Micro/Nanomotors. Physical Chemistry Chemical Physics, 22(28), 16407–16420. https://doi.org/10.1039/d0cp01514h
Servant, A., Qiu, F., Mazza, M., Kostarelos, K., & Nelson, B. J. (2015). Controlled In Vivo Swimming of a Swarm of Bacteria‐Like Microrobotic Flagella. Advanced Materials, 27(19), 2981–2988. https://doi.org/10.1002/adma.201404444
Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E., Zhang, X., & Wang, J. (2015). Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society, 137(6), 2163–2166. https://doi.org/10.1021/ja511012v
Yousefi, M., & Nejat Pishkenari, H. (2021). Independent Position Xontrol of Two Identical Magnetic Microrobots in a Plane Using Rotating Permanent Magnets. Journal of Micro-Bio Robotics, 1–9. https://doi.org/10.1007/s12213-021-00143-w
Johnson, B. V., Esantsi, N., & Cappelleri, D. J. (2020). Design of the μMAZE Platform and Microrobots for Independent Control and Micromanipulation Tasks. IEEE Robotics and Automation Letters, 5(4), 5677–5684. https://doi.org/10.1109/lra.2020.3010210
Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., & Sitti, M. (2018). Independent Actuation of Two-Tailed Microrobots. IEEE Robotics and Automation Letters, 3(3), 1703–1710. https://doi.org/10.1109/lra.2018.2801793
Khalil, I. S. M., Pichel, M. P., Abelmann, L., & Misra, S. (2013). Closed-loop control of magnetotactic bacteria. The International Journal of Robotics Research, 32(6), 637–649. https://doi.org/10.1177/0278364913479412
Khalil, I. S. M., Tabak, A. F., Hageman, T., Ewis, M., Pichel, M., Mitwally, M. E., El-Din, N. S., Abelmann, L., & Sitti, M. (2017). Near-surface effects on the controlled motion of magnetotactic bacteria. 2017 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra.2017.7989705
Tabak, A. F. (2020). Motion Control for Biohybrid Multiscale Robots. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). https://doi.org/10.1109/asyu50717.2020.9259857
Tabak, A. F. (2020). Adaptive Motion Control of Modified E. Coli. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). https://doi.org/10.1109/hora49412.2020.9152603
Tabak, A. F. (2020). A Simulated Control Method for a Magnetically-Coupled Bacterium and Robotic Arm. 2020 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). https://doi.org/10.1109/marss49294.2020.9307851
Tabak, A. F. (2020). Simulated Bilateral Motion Control of a Magneto-Tactic Bacterium via an Open Kinematic Chain. 2020 17th International Conference on Ubiquitous Robots (UR). https://doi.org/10.1109/ur49135.2020.9144834
Tabak, A. F. (2020). Independent Joint Control Simulations on Adaptive Maneuvering of a Magnetotactic Bacterium via a Single Permanent Magnet. European Journal of Science and Technology, 50–59. https://doi.org/10.31590/ejosat.818986
Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.2895337
Maxon Motor Product Catalog. Https://Www.Maxongroup.Com. Retrieved February 13, 2021, from https://www.maxongroup.com/maxon/view/product/397172
Tabak, A. F. (2018). Hydrodynamic Impedance of Bacteria and Bacteria-Inspired Micro-Swimmers: A New Strategy to Predict Power Consumption of Swimming Micro-Robots for Real-Time Applications. Advanced Theory and Simulations, 1(4), 1700013. https://doi.org/10.1002/adts.201700013
Brennen, C., & Winet, H. (1977). Fluid Mechanics of Propulsion by Cilia and Flagella. Annual Review of Fluid Mechanics, 9(1), 339–398. https://doi.org/10.1146/annurev.fl.09.010177.002011
Ishikawa, T., Sekiya, G., Imai, Y., & Yamaguchi, T. (2007). Hydrodynamic Interactions between Two Swimming Bacteria. Biophysical Journal, 93(6), 2217–2225. https://doi.org/10.1529/biophysj.107.110254
Spong, M. W., & Vidyasagar, M. (1989). Robot Dynamics and Control (1st ed.). Wiley.
Mazzucco, D., McKinley, G., Scott, R. D., & Spector, M. (2002). Rheology of Joint Fluid in Total Knee Arthroplasty Patients. Journal of Orthopaedic Research, 20(6), 1157–1163. https://doi.org/10.1016/s0736-0266(02)00050-5
Smith, A. M., Fleming, L., Wudebwe, U., Bowen, J., & Grover, L. M. (2014). Development of a Synovial Fluid Analogue with Bio-Relevant Rheology for Wear Testing of Orthopaedic Implants. Journal of the Mechanical Behavior of Biomedical Materials, 32, 177–184. https://doi.org/10.1016/j.jmbbm.2013.12.009
Lauga, E., DiLuzio, W. R., Whitesides, G. M., & Stone, H. A. (2006). Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 90(2), 400–412. https://doi.org/10.1529/biophysj.105.069401
Eager, D., Pendrill, A.-M., & Reistad, N. (2016). Beyond Velocity and Acceleration: Jerk, Snap and Higher Derivatives. European Journal of Physics, 37(6), 065008. https://doi.org/10.1088/0143-0807/37/6/065008
Ghosh, A., & Fischer, P. (2009). Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters, 9(6), 2243–2245. https://doi.org/10.1021/nl900186w
Goldfriend, T., Diamant, H., & Witten, T. A. (2015). Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape. I. Effect on Alignment. Physics of Fluids, 27(12), 123303. https://doi.org/10.1063/1.4936894
Goldfriend, T., Diamant, H., & Witten, T. A. (2016). Hydrodynamic Interactions between two Forced Objects of Arbitrary Shape. II. Relative Translation. Physical Review E, 93(4), 042609. https://doi.org/10.1103/physreve.93.042609
Tabak, A. F. (2021). Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals. International Journal of Advances in Engineering and Pure Sciences, 33, 1-9. https://doi.org/10.7240/jeps.880920
AMA
Tabak AF. Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals. JEPS. December 2021;33:1-9. doi:10.7240/jeps.880920
Chicago
Tabak, Ahmet Fatih. “Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid With Discontinuous Reference Signals”. International Journal of Advances in Engineering and Pure Sciences 33, December (December 2021): 1-9. https://doi.org/10.7240/jeps.880920.
EndNote
Tabak AF (December 1, 2021) Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals. International Journal of Advances in Engineering and Pure Sciences 33 1–9.
IEEE
A. F. Tabak, “Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals”, JEPS, vol. 33, pp. 1–9, 2021, doi: 10.7240/jeps.880920.
ISNAD
Tabak, Ahmet Fatih. “Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid With Discontinuous Reference Signals”. International Journal of Advances in Engineering and Pure Sciences 33 (December 2021), 1-9. https://doi.org/10.7240/jeps.880920.
JAMA
Tabak AF. Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals. JEPS. 2021;33:1–9.
MLA
Tabak, Ahmet Fatih. “Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid With Discontinuous Reference Signals”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, 2021, pp. 1-9, doi:10.7240/jeps.880920.
Vancouver
Tabak AF. Simulation Studies for Motion Control of Multiple Biohybrid Microrobots in Human Synovial Fluid with Discontinuous Reference Signals. JEPS. 2021;33:1-9.