Research Article
BibTex RIS Cite

Gıda Tuzlarında Halotolerant Bakterilerin İncelenmesi

Year 2022, Volume: 34 Issue: 2, 271 - 287, 30.06.2022
https://doi.org/10.7240/jeps.1024486

Abstract

Bu çalışmada, Fransa, Almanya, İngiltere, Pakistan, Türkiye, İsviçre, Avusturya’dan toplanan 25 gıda tuz örneğinin nem içeriği, kül içeriği, pH değerleri, toplam bakteri sayısı ve toplam halotolerant bakteri sayısı incelenmiştir. Gıda tuz örneklerinden tuza toleranslı saf bakteriler izole edilmiştir ve bu izolatların fenotipik özellikleri incelenmiştir. Tuza toleranslı bakterilerin gelişmesi üzerine farklı tuz, farklı pH değerleri ve farklı sıcaklık değerlerinin etkisi araştırılmıştır. Tuzların nem içeriği, kül içeriği ve pH değerleri sırasıyla %2.3-3.7, %95-97, 6.37-9.94 olarak bulunmuştur. Yüz on sekiz tuza toleranslı bakteri 17 tuz örneğinden izole edilmiştir. Tüm izolatlar çomak şeklindeydi. Yüz otuz bir izolat hareketli olmasına rağmen, yedi izolat hareketsizdi. Toplam olarak 118 izolat ve 20 izolat sırasıyla Gram-pozitif ve Gram-negatif olarak bulunmuştur. Tüm izolatlar hem NaCl yokluğunda hem de %10 NaCl varlığında; pH 5, 7, 9’da; 24°C ve 37°C’de gelişmiştir. Sekiz izolatın gelişimi 4°C’de de saptanmıştır. Yirmi iki izolat %20 NaCl konsantrasyonunda gelişti. İzolatların 86’sı farklı pigmentasyon gösterdi. İzolatların tamamı, 83’ü, 84’ü, 48’i, 92’si ve 100’ü sırasıyla katalaz, oksidaz, proteaz, lipaz, amilaz ve kazeinaz pozitif olarak saptanmıştır. Altmış izolat peptondan amonyak üretmiştir. Sonuç olarak, tuz örneklerinin nem içeriği çok düşük olmasına rağmen, tuz örneklerinin %80’i bakteri (1-58 KOB/g) ve %68’i tuza toleranslı bakteri (1-40 KOB/g) içerdi. Tuza toleranslı bakterilerin %57’si endospor oluşturdu ve tuza toleranslı bakterilerin %14’ü endotoksin içerdi. Bu nedenle, gıdaların bozulmasını ve insanlarda gıda kaynaklı hastalıkları önlemek için gıda tuzu numunelerindeki bu mikroorganizmaların etkili sterilizasyon yöntemleri kullanılarak tuzdan uzaklaştırılması gerekmektedir.

References

  • Lück, E. and Pager, M. (2000). Conservacion Quimica de los Alimentos: Caracteristicas, Usos, Efectos. Zaragoza: Acribia, 46-98.
  • Hutton, T. (2002). Sodium technological functions of salt in the manufacturing of food and drink products. Brit. Food J., 104, 126-52.
  • Hunaefi, D., Akumo, D. N. and Smetanska, I. (2013). Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnol., 27, 66-85.
  • Vatansever, S., Vegi A., Garden-Robinson, J. and Hall, C.A. (2017). The Effect of fermentation on the physicochemical characteristics of dry-salted vegetables. J. Food Res., 6(5).
  • Kabak, B. and Dobson, A. D. W. (2011). An Introduction to the traditional fermented foods and beverages of Turkey.Crit. Rev. Food Sci. Nutr., 51, 248-260.
  • Margesin, R. and Schinner F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5, 73-83.
  • Kushner, D.J. and Kamekura M. (1988). Physiology of halophilic eubacteria. In: Halophilic bacteria, F. Rodriguez-Valera (ed.), CRC Press, 1, 87-103.
  • Rahman, S.S., Siddique R. and Tabassum N. (2017). Isolation and identification of halotolerant soil bacteria from coastal patenga area. BMC Res. Notes., 10: 531.
  • Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst., 1(1), 5.
  • Lin, C.S., Liu, F.L., Lee, Y.C., Hwang, C.C., Tsai, Y.H. (2012). Histamine contents of salted seafood products in Taiwan and isolation of halotolerant histamine–forming bacteria, Food Chem., 131, 574-579.
  • Zaman, M.Z., Bakar, F.A., Selamat, J., Bakar, J., Ang, S.S., Chong, C.Y. (2014). Degradation of histamine by the halotolerant Staphylococcus carnosus FS19 isolate obtained from fish sauce, Food Control, 40, 58-63.
  • Haastrup, M.K., Johansen, P., Malskӕr, A.H., Castro-Mejia, J.L., Kot, W., Krych, L., Arneborg, N., Jespersen, L. (2018). Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts, Int. J. Food Microbiol., 117, 493-522.
  • Fıtrıanı, S., Güven, K. (2018). Isolation, screening, partial purification and characterization of protease from halophilic bacteria isolated from Endonesian fermented food, Anadolu Univ. Bilim Teknol. Derg. C Yaşam Bilim. Biyoteknol., 7(2), 130-142.
  • Srivastava, A.K., Sharma, A., Srivastava, R., Tiwari, P.K., Singh, A.K., Yadav, J., Jamali, H., Bharati, A.P., Srivastava, A.K., Kashyap, P.L., Chadkar, H., Kumar, M., Saxena, A.K. (2019). Draft genome sequence of halotolerant bacterium Chromohalobacter salexigens ANJ207, isolated from salt crystal deposits in pipelines, ASM, 8(15).
  • Rajesh, R., Gummadi, S.N., α-Amylase and cellulase production by novel halotolerant Bacillus sp. PM06 isolated from sugar cane press mud, Biotechnol. Appl. Biochem. 1-11.
  • Sang, X., Li, K., Zhu, Y., Ma, X., Hao, H., Bi, J., Zhang, G., Hou, H. (2020). The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation, Front. Microbiol., 11(782), 1-13.
  • Kothe, C.I., Bolotin, A., KraΪrem, B.F., Dridi, B., Food Microbiome Team, Renault, P. (2021). Unravelling the world of halophilic and halotolerant bacteria in cheese by combining cultural, genomic and metagenomic approaches, Int. J. Food Microbio., 358, 109312.
  • Thao, T.T.P., Thoa, L.T.K., Ngoc, L.M.T., Lan, T.T.P., Phuong, V., Truong, H.T.H., Khoo, K.S., Manickam, S., Hoa, T.T., Tram, N.D.Q., Show., P.L., Huy, N.D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evalution for bacterial pathogens inhibition, Chem. Eng. Process, 168.
  • Oliveira, L.C., Ramos, P.L., Marem, A., Kondo, M.Y., Rocha, R.C.S., Bertolini, T., Silveira, M.A.V., Cruz, J.B., Vasconcellos, S.P., Juliano, L. and Okamoto, D.N. (2015). Halotolerant bacteria in the são paulo zoo composting process and their hydrolases and bioproducts. Braz. J. Microbiol., 46(2), 347-54.
  • Mokashe, N., Chaudhari, B., Patil, U. (2018). Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector, Int. J. Biol., 117, 493-522.
  • Kılınç, B. (2019). Su ürünlerinde halofilik bakteriler ve endüstriyel alanda kullanımları, Acta Aquatica Turcica, 15(4): 535-545.
  • Amoozegar, M.A., Safarpour, A., Noghabi, K.A., Bakhtariary, T., Ventosa A. (2019). Halophiles and their vast potential in biofuel production, Front. Microbiol., 10, 1-17.
  • Swain, N.R., Anandharaj, M., Ray, R. C. and Rani, R. P. (2014). Fermented fruits and vegetables of Asia: A potential source of probiotics, Biotechnol. Res. Int., 1-19.
  • Yilmaz, E. and Birbir, M. (2019). Characterization of halotolerant Bacillus species isolated from salt samples collected from leather factories in Turkey. J. Amer. Leather Chem. Assoc, 114, 118-130.
  • Oren, A. (2008). Microbial salt at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4, 2.
  • Vilhelmsson O., Hafsteinsson H. and Kristjánsson J.K. (1997). Extremely halotolerant bacteria characteristic of fully cured and dried cod. Int. J. Food. Microbiol., 36, 163-70.
  • Rodrigues, M.J., Ho, P., López-Caballero, M., Bandarra, N.M. and Nunes, M.L. (2005). Chemical, microbiological, and sensory quality of cod products salted in different brines, Food microbiology and safety. J. Food Sci., 70(1), 1-6.
  • Huss H.H. and Valdimarsson G. (1990). Microbiology of salted fish. FAO Fish Techn. News, 10(1): 190.
  • Shaji, S., Mary, A. and Rani Juneius, C.E. (2018). Recent food preservation techniques employed in the food industry. In: Microbial Biotechnology, J.K. Patra, G. Das, H. Shin (eds), 2. Edition, Korea, 3-21.
  • Birbir, M. and Ilgaz, A. (1996). Isolation and identification of bacteria adversely affecting hide and leather quality. J. Soc. Leather Technol. Chem.,80, 147-153.
  • Bailey, D.G. (2003). The preservation of hides and skins. J. Amer. Leather Chem. Assoc., 98, 308-319.
  • Harley, J.P. and Prescott, L.M. (2002). Laboratory Exercises in Microbiology. 5.edition, McGraw-Hill Companies.
  • Johnson, T.R. and Case, C.L. (2010). Laboratory Experiments in Microbiology. Ninth Edition, Pearson.
  • De La Haba, R.R., Yilmaz, P., Sánchez-Porro, C., Birbir, M. and Ventosa, A. (2011). Salimicrobium salexigens sp. nov., a moderately halophilic bacterium from salted hides. Syst. Appl. Microbiol., 34(6), 435-439.
  • Sánchez-Porro, C., Martin, S., Mellado, E. and Ventosa, A.(2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes, J. Appl. Microbiol., 94, 295-300.
  • Caglayan, P., Birbir, M., Sánchez-Porro, C. and Ventosa, A. (2017). Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. J. Amer. Leather Chem. Assoc., 112(6), 207-216.
  • Gutiérrez-Arnillas, E., Rodríguez, A., Sanromán, M.A. and Deive, F.J. (2016). New sources of halophilic lipases: isolation of bacteria from Spanish and Turkish saltworks. Biochem. Eng. J., 109, 170-177.
  • Birbir, M., Ogan, A., Calli, B. and Mertoglu, B. (2004). Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World J. Microb. Biot., 20, 613-621.
  • Priest, F.G., Goodfellow, M., Shute, L.A. and Berkeley, R.C.W. (1987). Bacillus amyloliquefaciens sp. nov. norn. rev., Int. J. Syst. Evol. Microbiol., 69-71.
  • Arahal, D.R. andVentosa, A. (2002). Moderately halophilic and halotolerant species of Bacillus and related genera. In: Applications and Systematics of Bacillus and relatives. R.C.W. Berkeley, M.Heyndrickx, N.A. Logan, P. De Vos (ed), Blackwell, Oxford, 83-99.

A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries

Year 2022, Volume: 34 Issue: 2, 271 - 287, 30.06.2022
https://doi.org/10.7240/jeps.1024486

Abstract

Twenty-five food salts, collected from seven-country, were examined for moisture contents and ash contents, pH values, total numbers of bacteria, and total numbers of bacteria halotolerant bacteria. The growth and biochemical reactions of halotolerant bacteria at different NaCl concentrations, pH, and temperature values were investigated. The efficacy of dry-heat sterilization and high-pressure steam sterilization for the inactivation of bacteria was examined using six food salts. Moisture contents, ash contents, and pH values of salts were respectively found as 2.3-3.7%, 95-97%, and 6.37-9.94. Total numbers of bacteria and halotolerant bacteria were detected as between 1-58 CFU/g and 1-40 CFU/g on Modified Nutrient Agar media, respectively. While bacteria were found in twenty salt samples, halotolerant bacteria were detected in seventeen samples. One hundred thirty- eight rod-shaped halotolerant bacteria were isolated from seventeen samples. One hundred eighteen and twenty isolates were found Gram-positive and Gram-negative, respectively. While 131 isolates were motile, seven isolates were observed as non-motile. All isolates grew in both absence of NaCl and presence of 10% NaCl, pH 5, 7, and 9, 24°C, and 37°C. Eighty-six isolates showed different pigmentations. Ammonia production was detected at sixty isolates. Catalase, oxidase, protease, lipase, amylase, caseinase were produced by 138, 83, 84, 48, 92, 100 isolates, respectively. Fifty-seven percent of halotolerant bacteria formed endospores. All bacteria in six salts were killed using both dry-heat sterilization (175oC for 2 hours) and high-pressure steam sterilization (121oC for 30 minutes). In conclusion, we suggest using dry-heat sterilization or high-pressure steam sterilization to kill Gram-negative halotolerant bacteria containing endotoxin and Gram-positive halotolerant bacteria with endospores in food salts to prevent food spoilage and foodborne diseases in humans.

References

  • Lück, E. and Pager, M. (2000). Conservacion Quimica de los Alimentos: Caracteristicas, Usos, Efectos. Zaragoza: Acribia, 46-98.
  • Hutton, T. (2002). Sodium technological functions of salt in the manufacturing of food and drink products. Brit. Food J., 104, 126-52.
  • Hunaefi, D., Akumo, D. N. and Smetanska, I. (2013). Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnol., 27, 66-85.
  • Vatansever, S., Vegi A., Garden-Robinson, J. and Hall, C.A. (2017). The Effect of fermentation on the physicochemical characteristics of dry-salted vegetables. J. Food Res., 6(5).
  • Kabak, B. and Dobson, A. D. W. (2011). An Introduction to the traditional fermented foods and beverages of Turkey.Crit. Rev. Food Sci. Nutr., 51, 248-260.
  • Margesin, R. and Schinner F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5, 73-83.
  • Kushner, D.J. and Kamekura M. (1988). Physiology of halophilic eubacteria. In: Halophilic bacteria, F. Rodriguez-Valera (ed.), CRC Press, 1, 87-103.
  • Rahman, S.S., Siddique R. and Tabassum N. (2017). Isolation and identification of halotolerant soil bacteria from coastal patenga area. BMC Res. Notes., 10: 531.
  • Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst., 1(1), 5.
  • Lin, C.S., Liu, F.L., Lee, Y.C., Hwang, C.C., Tsai, Y.H. (2012). Histamine contents of salted seafood products in Taiwan and isolation of halotolerant histamine–forming bacteria, Food Chem., 131, 574-579.
  • Zaman, M.Z., Bakar, F.A., Selamat, J., Bakar, J., Ang, S.S., Chong, C.Y. (2014). Degradation of histamine by the halotolerant Staphylococcus carnosus FS19 isolate obtained from fish sauce, Food Control, 40, 58-63.
  • Haastrup, M.K., Johansen, P., Malskӕr, A.H., Castro-Mejia, J.L., Kot, W., Krych, L., Arneborg, N., Jespersen, L. (2018). Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts, Int. J. Food Microbiol., 117, 493-522.
  • Fıtrıanı, S., Güven, K. (2018). Isolation, screening, partial purification and characterization of protease from halophilic bacteria isolated from Endonesian fermented food, Anadolu Univ. Bilim Teknol. Derg. C Yaşam Bilim. Biyoteknol., 7(2), 130-142.
  • Srivastava, A.K., Sharma, A., Srivastava, R., Tiwari, P.K., Singh, A.K., Yadav, J., Jamali, H., Bharati, A.P., Srivastava, A.K., Kashyap, P.L., Chadkar, H., Kumar, M., Saxena, A.K. (2019). Draft genome sequence of halotolerant bacterium Chromohalobacter salexigens ANJ207, isolated from salt crystal deposits in pipelines, ASM, 8(15).
  • Rajesh, R., Gummadi, S.N., α-Amylase and cellulase production by novel halotolerant Bacillus sp. PM06 isolated from sugar cane press mud, Biotechnol. Appl. Biochem. 1-11.
  • Sang, X., Li, K., Zhu, Y., Ma, X., Hao, H., Bi, J., Zhang, G., Hou, H. (2020). The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation, Front. Microbiol., 11(782), 1-13.
  • Kothe, C.I., Bolotin, A., KraΪrem, B.F., Dridi, B., Food Microbiome Team, Renault, P. (2021). Unravelling the world of halophilic and halotolerant bacteria in cheese by combining cultural, genomic and metagenomic approaches, Int. J. Food Microbio., 358, 109312.
  • Thao, T.T.P., Thoa, L.T.K., Ngoc, L.M.T., Lan, T.T.P., Phuong, V., Truong, H.T.H., Khoo, K.S., Manickam, S., Hoa, T.T., Tram, N.D.Q., Show., P.L., Huy, N.D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evalution for bacterial pathogens inhibition, Chem. Eng. Process, 168.
  • Oliveira, L.C., Ramos, P.L., Marem, A., Kondo, M.Y., Rocha, R.C.S., Bertolini, T., Silveira, M.A.V., Cruz, J.B., Vasconcellos, S.P., Juliano, L. and Okamoto, D.N. (2015). Halotolerant bacteria in the são paulo zoo composting process and their hydrolases and bioproducts. Braz. J. Microbiol., 46(2), 347-54.
  • Mokashe, N., Chaudhari, B., Patil, U. (2018). Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector, Int. J. Biol., 117, 493-522.
  • Kılınç, B. (2019). Su ürünlerinde halofilik bakteriler ve endüstriyel alanda kullanımları, Acta Aquatica Turcica, 15(4): 535-545.
  • Amoozegar, M.A., Safarpour, A., Noghabi, K.A., Bakhtariary, T., Ventosa A. (2019). Halophiles and their vast potential in biofuel production, Front. Microbiol., 10, 1-17.
  • Swain, N.R., Anandharaj, M., Ray, R. C. and Rani, R. P. (2014). Fermented fruits and vegetables of Asia: A potential source of probiotics, Biotechnol. Res. Int., 1-19.
  • Yilmaz, E. and Birbir, M. (2019). Characterization of halotolerant Bacillus species isolated from salt samples collected from leather factories in Turkey. J. Amer. Leather Chem. Assoc, 114, 118-130.
  • Oren, A. (2008). Microbial salt at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4, 2.
  • Vilhelmsson O., Hafsteinsson H. and Kristjánsson J.K. (1997). Extremely halotolerant bacteria characteristic of fully cured and dried cod. Int. J. Food. Microbiol., 36, 163-70.
  • Rodrigues, M.J., Ho, P., López-Caballero, M., Bandarra, N.M. and Nunes, M.L. (2005). Chemical, microbiological, and sensory quality of cod products salted in different brines, Food microbiology and safety. J. Food Sci., 70(1), 1-6.
  • Huss H.H. and Valdimarsson G. (1990). Microbiology of salted fish. FAO Fish Techn. News, 10(1): 190.
  • Shaji, S., Mary, A. and Rani Juneius, C.E. (2018). Recent food preservation techniques employed in the food industry. In: Microbial Biotechnology, J.K. Patra, G. Das, H. Shin (eds), 2. Edition, Korea, 3-21.
  • Birbir, M. and Ilgaz, A. (1996). Isolation and identification of bacteria adversely affecting hide and leather quality. J. Soc. Leather Technol. Chem.,80, 147-153.
  • Bailey, D.G. (2003). The preservation of hides and skins. J. Amer. Leather Chem. Assoc., 98, 308-319.
  • Harley, J.P. and Prescott, L.M. (2002). Laboratory Exercises in Microbiology. 5.edition, McGraw-Hill Companies.
  • Johnson, T.R. and Case, C.L. (2010). Laboratory Experiments in Microbiology. Ninth Edition, Pearson.
  • De La Haba, R.R., Yilmaz, P., Sánchez-Porro, C., Birbir, M. and Ventosa, A. (2011). Salimicrobium salexigens sp. nov., a moderately halophilic bacterium from salted hides. Syst. Appl. Microbiol., 34(6), 435-439.
  • Sánchez-Porro, C., Martin, S., Mellado, E. and Ventosa, A.(2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes, J. Appl. Microbiol., 94, 295-300.
  • Caglayan, P., Birbir, M., Sánchez-Porro, C. and Ventosa, A. (2017). Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. J. Amer. Leather Chem. Assoc., 112(6), 207-216.
  • Gutiérrez-Arnillas, E., Rodríguez, A., Sanromán, M.A. and Deive, F.J. (2016). New sources of halophilic lipases: isolation of bacteria from Spanish and Turkish saltworks. Biochem. Eng. J., 109, 170-177.
  • Birbir, M., Ogan, A., Calli, B. and Mertoglu, B. (2004). Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World J. Microb. Biot., 20, 613-621.
  • Priest, F.G., Goodfellow, M., Shute, L.A. and Berkeley, R.C.W. (1987). Bacillus amyloliquefaciens sp. nov. norn. rev., Int. J. Syst. Evol. Microbiol., 69-71.
  • Arahal, D.R. andVentosa, A. (2002). Moderately halophilic and halotolerant species of Bacillus and related genera. In: Applications and Systematics of Bacillus and relatives. R.C.W. Berkeley, M.Heyndrickx, N.A. Logan, P. De Vos (ed), Blackwell, Oxford, 83-99.
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Meral Birbir 0000-0001-6681-5892

Seyma Helva This is me 0000-0002-0967-6192

Pınar Çağlayan 0000-0002-0238-1754

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 34 Issue: 2

Cite

APA Birbir, M., Helva, S., & Çağlayan, P. (2022). A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries. International Journal of Advances in Engineering and Pure Sciences, 34(2), 271-287. https://doi.org/10.7240/jeps.1024486
AMA Birbir M, Helva S, Çağlayan P. A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries. JEPS. June 2022;34(2):271-287. doi:10.7240/jeps.1024486
Chicago Birbir, Meral, Seyma Helva, and Pınar Çağlayan. “A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries”. International Journal of Advances in Engineering and Pure Sciences 34, no. 2 (June 2022): 271-87. https://doi.org/10.7240/jeps.1024486.
EndNote Birbir M, Helva S, Çağlayan P (June 1, 2022) A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries. International Journal of Advances in Engineering and Pure Sciences 34 2 271–287.
IEEE M. Birbir, S. Helva, and P. Çağlayan, “A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries”, JEPS, vol. 34, no. 2, pp. 271–287, 2022, doi: 10.7240/jeps.1024486.
ISNAD Birbir, Meral et al. “A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries”. International Journal of Advances in Engineering and Pure Sciences 34/2 (June 2022), 271-287. https://doi.org/10.7240/jeps.1024486.
JAMA Birbir M, Helva S, Çağlayan P. A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries. JEPS. 2022;34:271–287.
MLA Birbir, Meral et al. “A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 2, 2022, pp. 271-87, doi:10.7240/jeps.1024486.
Vancouver Birbir M, Helva S, Çağlayan P. A Detailed Study on Halotolerant Bacteria Isolated from Food Salts Collected from Different Countries. JEPS. 2022;34(2):271-87.