Geri Dönüştürülmüş PP Bazlı Nano Grafen Takviyeli Hibrit Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin Mikromekanik Yöntemler ile Belirlenmesi
Year 2022,
Volume: 34 Issue: 4, 569 - 579, 31.12.2022
Alaeddin Burak İrez
,
Ramazan Kaya
Abstract
Koronavirüs (COVID-19) salgını tüm dünyada koruyucu ekipmanların, maskelerin ve tulumların kullanımı arttırmıştır. Koruyucu maske ve tulumların polipropilenden (PP) imal edildiğini düşündüğümüzde maske bazlı PP atık miktarı dikkat edilmesi gereken seviyelere çıkmıştır. Çevre kirliliğini önlemek ve ekosistemi tehlikeye atmaktan kaçınmak için atık maskelerin düzenli bir şekilde toplanması ve geri dönüştürülmesi çok önemlidir. Bu çalışmada, tek kullanımlık maskelerin geri dönüştürülmesiyle elde edilen polipropilen (rPP) matrisli kompozit malzemeler imal edilmiştir. Bu kompozit malzemelerin otomotiv sektöründeki tampon ve benzeri parçalarda kullanılması durumunda, geliştirilen kompozit malzemelerin kopma uzamasını ve rijitliğini arttırmak için sırasıyla Olefin Blok Kopolimer (OBC) ve Grafen Nanoplaka (GnP) takviyeleri kullanılmıştır. Takviye malzemelerine ön işlem uygulanmasından sonra kompozit malzemeler imal edilmiştir. Çekme deneyi sonuçlarına göre GnP takviyesi kompozitlerin dayanımını ve elastisite modülünü arttırırken, OBC ise kompozitlerin kopma uzaması değerlerini iyileştirmiştir. Ayrıca bu çalışmanın diğer önemli bir amacı, imal edilen kompozit malzemelerin mekanik özelliklerinin mikromekanik yaklaşımlar kullanılarak belirlenmesidir. Bunun için Halpin-Tsai (HT), Mori-Tanaka (MT) ve Öz-uyumlu Model (Self Consistent Model-SC) gibi analitik yöntemler kullanılıp elde edilen sonuçlar birbirleri ile karşılaştırılmıştır. Bu karşılaştırmalar neticesinde düşük grafen takviyelerinde mikromekanik modeller ile tutarlı sonuçlar elde edilmiştir.
Supporting Institution
İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Ofisi
Project Number
MAB-2021-42811
Thanks
Bu araştırma, İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Ofisi (İTÜ BAPSIS) tarafından MAB-2021-42811 hibesi kapsamında desteklenmiştir
References
- Referans1 World Health Organization (WHO). Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages. 2020 (Erişim Tarihi 24 Ocak 2021). Erişim adresi: https://www.who.int/ publications-detail/rational-useof-personal-protective-equipment-for-coronavirusdisease-(covid-19)-and-considerations-during-severeshortages
- Referans2 K. Selvaranjan, S. Navaratnam, P. Rajeev, N. Ravintherakumaran, Environmental challenges induced by extensive use of face masks during COVID-19: a review and potential solutions, Environ. Challenge. 3 (2021), 100039, https://doi.org/ 10.1016/j.envc.2021.100039.
- Referans3 M.P. Luda, G. Ragosta, P. Musto, D. Acierno, L. Di Maio, G. Camino, V. Nepote, Regenerative recycling of automotive polymer components: poly(propylene) based car bumpers, Macromol. Mater. Eng. 288 (2003) 613–620, https://doi.org/ 10.1002/mame.200300001.
- Referans4 S.H. Jafari, A.K. Gupta, Impact strength and dynamic mechanical properties correlation in elastomer-modified polypropylene, J. Appl. Polym. Sci. 78 (2000) 962–971, https://doi.org/10.1002/1097-4628(20001031)78:5<9 62::AID-APP40>3.0.CO;2–5.
- Referans5 Shida Han, Tianci Zhang, Yuhang Guo, Chunhai Li, Hong Wu, Shaoyun Guo, Brittle-ductile transition behavior of the polypropylene/ultra-high molecular weight polyethylene/olefin block copolymers ternary blends: Dispersion and interface design, Polymer, Volume 182,2019,121819,ISSN0032-3861, https://doi.org/ 10.1016/ j.polymer.2019.121819.
- Referans6 Liang, J. Z. (2019). Impact fracture behavior and morphology of polypropylene/graphene nanoplatelets composites. Polymer Composites, 40(S1), E511-E516.
- Referans7 Yunbo, Luan & Gao, Feilong & Li, Yongcun & Yang, Jinglei & Hu, Yinchun & Guo, Zhangxin & Wang, Zhihua & Zhou, Aijuan. (2017). Healing Mechanisms Induced by Synergy of Graphene-CNTs and Microwave Focusing Effect for the Thermoplastic Polyurethane Composites. Composites Part A: Applied Science and Manufacturing. 106. 10.1016/j.c omposit esa.2017.12.009.
- Referans8 Shokrieh, M. M., Esmkhani, M., Shokrieh, Z., & Zhao, Z. (2014). Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular–micromechanics method. Computational materials science, 92, 444-450.
- Referans9 Arefi, M., Tabatabaeian, A., & Mohammadi, M. (2021). Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory. Defence Technology, 17(1), 64-74.
- Referans10 Thorvaldsen, T. (2015). Modelling the elastic stiffness of nanocomposites using the Mori-Tanaka method.
Referans11 MIT, «Mean-field homogenization,» (Çevrimiçi). https://abaqus-docs.mit.edu/2017/English/SIMACAEMATR efMap/simamat-c-meanfieldhomogenization.htm#:~:text= Mean%2Dfield%20homogeniza tion%3A,f
- Referans12 Kırış, A. (2007). Hasarlı Malzemelerin Mikro Elastik Teorilerle Modellenmesi Ve Eshelby Tansörleri (Doctoral dissertation, Fen Bilimleri Enstitüsü).
- Referans13 Shokrieh, M. M., Esmkhani, M., Shokrieh, Z., & Zhao, Z. (2014). Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular-dynamics–micromechanicsethod. Computational materials science, 92, 444-450.
- Referans14 Jain, A. (2019). Modified Mori-Tanaka methods for damage modelling of short fibre reinforced composites. In 22nd International Conference on Composite Materials, Melbourne.
- Referans15 Becker, F., & Hopmann, C. (2020). Stiffness Estimates for Composites with Elliptic Cylindrical Voids. Materials, 13(6), 1354.
- Referans16 Kanaun, S. K., & Levin, V. (2007). Self-consistent methods for composites: Vol. 1: Static problems (Vol. 148). Springer Science & Business Media.
- Referans17 Okan, C., Kaya, R., Irez, A. B., ve Cebe, E. (2022). Effect of the Graphene Nanoplatelets (GnPs) on the Mechanical Properties in Recycled PP-Based Hybrid Composites. In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3 (pp. 23-28). Springer, Cham.
- Referans18 Yang, W., Jiang, Z., Hu, X., Li, X., Wang, H., & Xiao, R. (2019). Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere, 220, 514-522
- Referans19 Irez, A. B., Okan, C., Kaya, R., & Cebe, E. (2022). Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies, e00389.
- Referans20 G. Liu, X. Zhang, X. Li, H. Chen, K. Walton, D. Wang, Correlation of miscibility and mechanical properties of polypropylene/olefin block copolymers: effect of chain composition, J. Appl. Polym. Sci. 125 (2012) 666–675, https://doi.org/10.1002/ app.36244.
- Referans21 Jun, Y. S., Um, J. G., Jiang, G., & Yu, A. (2018). A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polymer Letters, 12(10), 885-897.
- Referans22 Irez, A. B., Bayraktar, E., & Miskioglu, I. (2020). Fracture toughness analysis of epoxy-recycled rubber-based composite reinforced with graphene nanoplatelets for structural applications in automotive and aeronautics. Polymers, 12(2), 448.
Development of Recycled PP Based Nano Graphene Reinforced Hybrid Composites and Determination of Mechanical Properties by Micromechanical Methods
Year 2022,
Volume: 34 Issue: 4, 569 - 579, 31.12.2022
Alaeddin Burak İrez
,
Ramazan Kaya
Abstract
The use of protective masks has increased worldwide due to the coronavirus (COVID-19) pandemic. Since disposable masks and protective clothing are generally made of polypropylene (PP), PP waste has increased to significant levels due to increased use. Therefore, it is very important to collect and reuse them on a regular basis to prevent environmental pollution and avoid endangering the ecosystem. In this study, recycled polypropylene (rPP) from used disposable masks was selected as the matrix material of sustainable composites. To improve the elongation capacity and stiffness of the matrix, olefin block copolymer (OBC) and graphene nanoplatelets (GnP) were respectively used. After the pretreatment of the reinforcements, the composites were manufactured and characterized experimentally. Results showed that GnPs improved the tensile strength and Young’s moduli of the composites whereas OBC increased the strain capacity of the composites. Moreover, in this study, the mechanical properties of the manufactured composites were estimated using micromechanical homogenization models including Halpin-Tsai (HT), Mori-Tanaka (MT), and Self-Consistent Models (SC). It is seen that micromechanical methods were consistent with the experimental results for low content of GnP reinforcements.
Project Number
MAB-2021-42811
References
- Referans1 World Health Organization (WHO). Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages. 2020 (Erişim Tarihi 24 Ocak 2021). Erişim adresi: https://www.who.int/ publications-detail/rational-useof-personal-protective-equipment-for-coronavirusdisease-(covid-19)-and-considerations-during-severeshortages
- Referans2 K. Selvaranjan, S. Navaratnam, P. Rajeev, N. Ravintherakumaran, Environmental challenges induced by extensive use of face masks during COVID-19: a review and potential solutions, Environ. Challenge. 3 (2021), 100039, https://doi.org/ 10.1016/j.envc.2021.100039.
- Referans3 M.P. Luda, G. Ragosta, P. Musto, D. Acierno, L. Di Maio, G. Camino, V. Nepote, Regenerative recycling of automotive polymer components: poly(propylene) based car bumpers, Macromol. Mater. Eng. 288 (2003) 613–620, https://doi.org/ 10.1002/mame.200300001.
- Referans4 S.H. Jafari, A.K. Gupta, Impact strength and dynamic mechanical properties correlation in elastomer-modified polypropylene, J. Appl. Polym. Sci. 78 (2000) 962–971, https://doi.org/10.1002/1097-4628(20001031)78:5<9 62::AID-APP40>3.0.CO;2–5.
- Referans5 Shida Han, Tianci Zhang, Yuhang Guo, Chunhai Li, Hong Wu, Shaoyun Guo, Brittle-ductile transition behavior of the polypropylene/ultra-high molecular weight polyethylene/olefin block copolymers ternary blends: Dispersion and interface design, Polymer, Volume 182,2019,121819,ISSN0032-3861, https://doi.org/ 10.1016/ j.polymer.2019.121819.
- Referans6 Liang, J. Z. (2019). Impact fracture behavior and morphology of polypropylene/graphene nanoplatelets composites. Polymer Composites, 40(S1), E511-E516.
- Referans7 Yunbo, Luan & Gao, Feilong & Li, Yongcun & Yang, Jinglei & Hu, Yinchun & Guo, Zhangxin & Wang, Zhihua & Zhou, Aijuan. (2017). Healing Mechanisms Induced by Synergy of Graphene-CNTs and Microwave Focusing Effect for the Thermoplastic Polyurethane Composites. Composites Part A: Applied Science and Manufacturing. 106. 10.1016/j.c omposit esa.2017.12.009.
- Referans8 Shokrieh, M. M., Esmkhani, M., Shokrieh, Z., & Zhao, Z. (2014). Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular–micromechanics method. Computational materials science, 92, 444-450.
- Referans9 Arefi, M., Tabatabaeian, A., & Mohammadi, M. (2021). Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory. Defence Technology, 17(1), 64-74.
- Referans10 Thorvaldsen, T. (2015). Modelling the elastic stiffness of nanocomposites using the Mori-Tanaka method.
Referans11 MIT, «Mean-field homogenization,» (Çevrimiçi). https://abaqus-docs.mit.edu/2017/English/SIMACAEMATR efMap/simamat-c-meanfieldhomogenization.htm#:~:text= Mean%2Dfield%20homogeniza tion%3A,f
- Referans12 Kırış, A. (2007). Hasarlı Malzemelerin Mikro Elastik Teorilerle Modellenmesi Ve Eshelby Tansörleri (Doctoral dissertation, Fen Bilimleri Enstitüsü).
- Referans13 Shokrieh, M. M., Esmkhani, M., Shokrieh, Z., & Zhao, Z. (2014). Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular-dynamics–micromechanicsethod. Computational materials science, 92, 444-450.
- Referans14 Jain, A. (2019). Modified Mori-Tanaka methods for damage modelling of short fibre reinforced composites. In 22nd International Conference on Composite Materials, Melbourne.
- Referans15 Becker, F., & Hopmann, C. (2020). Stiffness Estimates for Composites with Elliptic Cylindrical Voids. Materials, 13(6), 1354.
- Referans16 Kanaun, S. K., & Levin, V. (2007). Self-consistent methods for composites: Vol. 1: Static problems (Vol. 148). Springer Science & Business Media.
- Referans17 Okan, C., Kaya, R., Irez, A. B., ve Cebe, E. (2022). Effect of the Graphene Nanoplatelets (GnPs) on the Mechanical Properties in Recycled PP-Based Hybrid Composites. In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3 (pp. 23-28). Springer, Cham.
- Referans18 Yang, W., Jiang, Z., Hu, X., Li, X., Wang, H., & Xiao, R. (2019). Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere, 220, 514-522
- Referans19 Irez, A. B., Okan, C., Kaya, R., & Cebe, E. (2022). Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies, e00389.
- Referans20 G. Liu, X. Zhang, X. Li, H. Chen, K. Walton, D. Wang, Correlation of miscibility and mechanical properties of polypropylene/olefin block copolymers: effect of chain composition, J. Appl. Polym. Sci. 125 (2012) 666–675, https://doi.org/10.1002/ app.36244.
- Referans21 Jun, Y. S., Um, J. G., Jiang, G., & Yu, A. (2018). A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polymer Letters, 12(10), 885-897.
- Referans22 Irez, A. B., Bayraktar, E., & Miskioglu, I. (2020). Fracture toughness analysis of epoxy-recycled rubber-based composite reinforced with graphene nanoplatelets for structural applications in automotive and aeronautics. Polymers, 12(2), 448.