Research Article
BibTex RIS Cite

Dark Energy from the Scalar Field and Gauss-Bonnet Interactions

Year 2023, Volume: 35 Issue: 1, 66 - 71, 30.03.2023

Abstract

In this work, we study a homogeneous and isotropic cosmological model of the universe filled with the perfect fluid and scalar field. Using the framework of Brans-Dicke (BD) and Gauss-Bonnet (GB) theories of gravity, we obtain the field equations and find the expansion parameter and dynamical field functions. We suppose that an energy interaction occurs between the BD and GB components, then adopting this argument, we speculate that the BD scalar field may arise from the intrinsic properties of the GB medium. Also, we get the positive energy density and negative pressure for the baryonic part of matter, so we confirm that this property coincides with the dark energy behavior of the late time universe. We conclude that since some sort of interaction between the scalar field and GB sector provides the accelerating expansion of the universe, to recover the dark energy effect, we may no longer need a cosmological constant.

References

  • Benetti, M., Santos da Costa, S., Capozziello, S., Alcaniz, J. S., & De Laurentis, M. (2018). Observational constraints on gauss–bonnet cosmology. International Journal of Modern Physics D, 27 (08), 1850084. Retrieved from https://doi.org/10.1142/S0218271818500840 doi: 10.1142/S0218271818500840
  • Brans, C., & Dicke, R. H. (1961, Nov). Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 124 , 925–935. Retrieved from https://link.aps.org/doi/10.1103/PhysRev.124.925 doi: 10.1103/PhysRev.124.925
  • Caldwell, R. R. (2002). A phantom menace? cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B, 545 (1), 23-29. Retrieved from https://www.sciencedirect.com/science/article/pii/S0370269302025893 doi: https://doi.org/10.1016/S0370-2693(02)02589-3
  • Callan, C., Friedan, D., Martinec, E., & Perry, M. (1985). Strings in background fields. Nuclear Physics B, 262 (4), 593-609. Retrieved from
  • https://www.sciencedirect.com/science/article/pii/0550321385905061 doi: https://doi.org/10.1016/0550-3213(85)90506-1
  • Cataldo, M., Mella, P., Minning, P., & Saavedra, J. (2008, 5). Interacting cosmic fluids in power-law friedmann-robertson-walker cosmological models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 662 , 314-322. doi: 10.1016/j.physletb.2008.03.022
  • Chakraborty, S., Paul, T., & Sengupta, S. (2018, 10). Inflation driven by einstein-gauss-bonnet gravity. Physical Review D, 98 . doi: 10.1103/PhysRevD.98.083539
  • Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. (2012, 3). Modified gravity and cosmology. Physics Reports, 513 , 1-189. doi: 10.1016/j.physrep.2012.01.001
  • Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. D., & Zerbini, S. (2007, Apr). String-inspired gauss-bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. Phys. Rev. D, 75 , 086002. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.75.086002 doi: 10.1103/PhysRevD.75.086002
  • El-Nabulsi, A. R., & El-Nabulsi, A. R. (2010). Modified brans-dicke scalar tensor theories with generalized stringy gauss-bonnet corrections. Astrophys Space Sci, 327 , 167-171. doi: 10.1007/s10509-010-0373-3
  • Granda, L. N., & Jimenez, D. F. (2014, Dec). Dark energy from gaussbonnet and nonminimal couplings. Phys. Rev. D, 90 , 123512. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.90.123512 doi: 10.1103/PhysRevD.90.123512
  • Gross, D. J., & Sloan, J. H. (1987, January). The quartic effective action for the heterotic string. Nuclear Physics B, 291 , 41-89. doi: 10.1016/0550-3213(87)90465-2
  • Gürses, M. (2008, 9). Some solutions of the gauss–bonnet gravity with scalar field in four dimensions. General Relativity and Gravitation, 40 , 1825-1830. Retrieved from http://link.springer.com/10.1007/s10714-007-0579-z doi: 10.1007/s10714-007- 0579-z
  • Guo, Z. K., & Schwarz, D. J. (2010, 1). Slow-roll inflation with a gaussbonnet correction. Physical Review D - Particles, Fields, Gravitation and Cosmology, 81 . Retrieved from http://arxiv.org/abs/1001.1897 http://dx.doi.org/10.1103/PhysRevD.81.123520 doi: 10.1103/PHYSREVD.81.123520
  • Hikmawan, G., Soda, J., Suroso, A., & Zen, F. P. (2016, 3). Comment on ”gauss-bonnet inflation”. Physical Review D, 93 . Retrieved from http://arxiv.org/abs/1512.00222 http://dx.doi.org/10.1103/PhysRevD.93.068301 doi: 10.1103/PHYSREVD.93.068301
  • Jiang, P.-X., Hu, J.-W., & Guo, Z.-K. (2013, Dec). Inflation coupled to a gauss-bonnet term. Phys. Rev. D, 88 , 123508. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.88.123508 doi: 10.1103/PhysRevD.88.123508
  • Kanti, P., Gannouji, R., & Dadhich, N. (2015, 8). Gauss-bonnet inflation. Physical Review D - Particles, Fields, Gravitation and Cosmology, 92 . (BD-GB) doi: 10.1103/PHYSREVD.92.041302
  • Nojiri, S., & Odintsov, S. D. (2005, 12). Modified gauss-bonnet theory as gravitational alternative for dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 631 , 1-6. doi: 10.1016/j.physletb.2005.10.010
  • Odintsov, S. D., Oikonomou, V. K., & Fronimos, F. P. (2020). Nonminimally coupled einstein–gauss–bonnet inflation phenomenology in view of gw170817. Annals of Physics, 420 , 168250. Retrieved from
  • https://www.sciencedirect.com/science/article/pii/S0003491620301846 doi: https://doi.org/10.1016/j.aop.2020.168250
  • Oikonomou, V. K., & Fronimos, F. P. (2020). Non-minimally coupled einstein-gaussbonnet gravity with massless gravitons: the constant-roll case. Eur. Phys. J. Plus, 135 , 917. Retrieved from https://doi.org/10.1140/epjp/s13360-020-00926-3 doi: 10.1140/epjp/s13360-020-00926-3
  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., . . . Couch, W. J. (1999). Measurements of ) and ” from 42 high-redshift supernovae (Vol. 517). Retrieved from www.astro.lsa.umich.edu/btc/user.html.
  • Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., . . . Tonry, J. (1998, September). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant (Vol. 116) (No. 3). doi: 10.1086/300499
  • Weinberg, S. (1989, Jan). The cosmological constant problem. Rev. Mod. Phys., 61 , 1–23. Retrieved from https://link.aps.org/doi/10.1103/RevModPhys.61.1 doi: 10.1103/RevModPhys.61.1

Dark Energy from the Scalar Field and Gauss-Bonnet Interactions

Year 2023, Volume: 35 Issue: 1, 66 - 71, 30.03.2023

Abstract

In this work, we study a homogeneous and isotropic cosmological model of the universe filled with the perfect fluid and scalar field. Using the framework of Brans-Dicke (BD) and Gauss-Bonnet (GB) theories of gravity, we obtain the field equations and find the expansion parameter and dynamical field functions. We suppose that an energy interaction occurs between the BD and GB components, then adopting this argument, we speculate that the BD scalar field may arise from the intrinsic properties of the GB medium. Also, we get the positive energy density and negative pressure for the baryonic part of matter, so we confirm that this property coincides with the dark energy behavior of the late time universe. We conclude that since some sort of interaction between the scalar field and GB sector provides the accelerating expansion of the universe, to recover the dark energy effect, we may no longer need a cosmological constant.

References

  • Benetti, M., Santos da Costa, S., Capozziello, S., Alcaniz, J. S., & De Laurentis, M. (2018). Observational constraints on gauss–bonnet cosmology. International Journal of Modern Physics D, 27 (08), 1850084. Retrieved from https://doi.org/10.1142/S0218271818500840 doi: 10.1142/S0218271818500840
  • Brans, C., & Dicke, R. H. (1961, Nov). Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 124 , 925–935. Retrieved from https://link.aps.org/doi/10.1103/PhysRev.124.925 doi: 10.1103/PhysRev.124.925
  • Caldwell, R. R. (2002). A phantom menace? cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B, 545 (1), 23-29. Retrieved from https://www.sciencedirect.com/science/article/pii/S0370269302025893 doi: https://doi.org/10.1016/S0370-2693(02)02589-3
  • Callan, C., Friedan, D., Martinec, E., & Perry, M. (1985). Strings in background fields. Nuclear Physics B, 262 (4), 593-609. Retrieved from
  • https://www.sciencedirect.com/science/article/pii/0550321385905061 doi: https://doi.org/10.1016/0550-3213(85)90506-1
  • Cataldo, M., Mella, P., Minning, P., & Saavedra, J. (2008, 5). Interacting cosmic fluids in power-law friedmann-robertson-walker cosmological models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 662 , 314-322. doi: 10.1016/j.physletb.2008.03.022
  • Chakraborty, S., Paul, T., & Sengupta, S. (2018, 10). Inflation driven by einstein-gauss-bonnet gravity. Physical Review D, 98 . doi: 10.1103/PhysRevD.98.083539
  • Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. (2012, 3). Modified gravity and cosmology. Physics Reports, 513 , 1-189. doi: 10.1016/j.physrep.2012.01.001
  • Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. D., & Zerbini, S. (2007, Apr). String-inspired gauss-bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. Phys. Rev. D, 75 , 086002. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.75.086002 doi: 10.1103/PhysRevD.75.086002
  • El-Nabulsi, A. R., & El-Nabulsi, A. R. (2010). Modified brans-dicke scalar tensor theories with generalized stringy gauss-bonnet corrections. Astrophys Space Sci, 327 , 167-171. doi: 10.1007/s10509-010-0373-3
  • Granda, L. N., & Jimenez, D. F. (2014, Dec). Dark energy from gaussbonnet and nonminimal couplings. Phys. Rev. D, 90 , 123512. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.90.123512 doi: 10.1103/PhysRevD.90.123512
  • Gross, D. J., & Sloan, J. H. (1987, January). The quartic effective action for the heterotic string. Nuclear Physics B, 291 , 41-89. doi: 10.1016/0550-3213(87)90465-2
  • Gürses, M. (2008, 9). Some solutions of the gauss–bonnet gravity with scalar field in four dimensions. General Relativity and Gravitation, 40 , 1825-1830. Retrieved from http://link.springer.com/10.1007/s10714-007-0579-z doi: 10.1007/s10714-007- 0579-z
  • Guo, Z. K., & Schwarz, D. J. (2010, 1). Slow-roll inflation with a gaussbonnet correction. Physical Review D - Particles, Fields, Gravitation and Cosmology, 81 . Retrieved from http://arxiv.org/abs/1001.1897 http://dx.doi.org/10.1103/PhysRevD.81.123520 doi: 10.1103/PHYSREVD.81.123520
  • Hikmawan, G., Soda, J., Suroso, A., & Zen, F. P. (2016, 3). Comment on ”gauss-bonnet inflation”. Physical Review D, 93 . Retrieved from http://arxiv.org/abs/1512.00222 http://dx.doi.org/10.1103/PhysRevD.93.068301 doi: 10.1103/PHYSREVD.93.068301
  • Jiang, P.-X., Hu, J.-W., & Guo, Z.-K. (2013, Dec). Inflation coupled to a gauss-bonnet term. Phys. Rev. D, 88 , 123508. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.88.123508 doi: 10.1103/PhysRevD.88.123508
  • Kanti, P., Gannouji, R., & Dadhich, N. (2015, 8). Gauss-bonnet inflation. Physical Review D - Particles, Fields, Gravitation and Cosmology, 92 . (BD-GB) doi: 10.1103/PHYSREVD.92.041302
  • Nojiri, S., & Odintsov, S. D. (2005, 12). Modified gauss-bonnet theory as gravitational alternative for dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 631 , 1-6. doi: 10.1016/j.physletb.2005.10.010
  • Odintsov, S. D., Oikonomou, V. K., & Fronimos, F. P. (2020). Nonminimally coupled einstein–gauss–bonnet inflation phenomenology in view of gw170817. Annals of Physics, 420 , 168250. Retrieved from
  • https://www.sciencedirect.com/science/article/pii/S0003491620301846 doi: https://doi.org/10.1016/j.aop.2020.168250
  • Oikonomou, V. K., & Fronimos, F. P. (2020). Non-minimally coupled einstein-gaussbonnet gravity with massless gravitons: the constant-roll case. Eur. Phys. J. Plus, 135 , 917. Retrieved from https://doi.org/10.1140/epjp/s13360-020-00926-3 doi: 10.1140/epjp/s13360-020-00926-3
  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., . . . Couch, W. J. (1999). Measurements of ) and ” from 42 high-redshift supernovae (Vol. 517). Retrieved from www.astro.lsa.umich.edu/btc/user.html.
  • Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., . . . Tonry, J. (1998, September). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant (Vol. 116) (No. 3). doi: 10.1086/300499
  • Weinberg, S. (1989, Jan). The cosmological constant problem. Rev. Mod. Phys., 61 , 1–23. Retrieved from https://link.aps.org/doi/10.1103/RevModPhys.61.1 doi: 10.1103/RevModPhys.61.1
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Dilek Kazıcı 0000-0003-4339-1489

Early Pub Date March 29, 2023
Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 35 Issue: 1

Cite

APA Kazıcı, D. (2023). Dark Energy from the Scalar Field and Gauss-Bonnet Interactions. International Journal of Advances in Engineering and Pure Sciences, 35(1), 66-71. https://doi.org/10.7240/jeps.1199731
AMA Kazıcı D. Dark Energy from the Scalar Field and Gauss-Bonnet Interactions. JEPS. March 2023;35(1):66-71. doi:10.7240/jeps.1199731
Chicago Kazıcı, Dilek. “Dark Energy from the Scalar Field and Gauss-Bonnet Interactions”. International Journal of Advances in Engineering and Pure Sciences 35, no. 1 (March 2023): 66-71. https://doi.org/10.7240/jeps.1199731.
EndNote Kazıcı D (March 1, 2023) Dark Energy from the Scalar Field and Gauss-Bonnet Interactions. International Journal of Advances in Engineering and Pure Sciences 35 1 66–71.
IEEE D. Kazıcı, “Dark Energy from the Scalar Field and Gauss-Bonnet Interactions”, JEPS, vol. 35, no. 1, pp. 66–71, 2023, doi: 10.7240/jeps.1199731.
ISNAD Kazıcı, Dilek. “Dark Energy from the Scalar Field and Gauss-Bonnet Interactions”. International Journal of Advances in Engineering and Pure Sciences 35/1 (March 2023), 66-71. https://doi.org/10.7240/jeps.1199731.
JAMA Kazıcı D. Dark Energy from the Scalar Field and Gauss-Bonnet Interactions. JEPS. 2023;35:66–71.
MLA Kazıcı, Dilek. “Dark Energy from the Scalar Field and Gauss-Bonnet Interactions”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 1, 2023, pp. 66-71, doi:10.7240/jeps.1199731.
Vancouver Kazıcı D. Dark Energy from the Scalar Field and Gauss-Bonnet Interactions. JEPS. 2023;35(1):66-71.