Günümüzde 1.5 milyon m3 kapasitesiyle Ömerli İçme Suyu Arıtma Tesisi İstanbul'un içme suyu ihtiyacının %48’ini karşılamaktadır. Tesisteki pompaların durumu ve boru hatlarındaki debi ölçümleri uzaktan kontrol ve kumanda sistemleriyle (SCADA) anlık olarak izlenmektedir. Ancak boru içindeki akışlar, kolektör hatları ya da ölçümü yapılmayan noktalardaki suyun hareketi takip edilememektedir. Bu çalışmada, pompalı hatlarla cazibeli hatların birlikte kullanılmasının, pompalar üzerindeki etkileri deneysel ve sayısal analizlerle incelenmiştir. Deneysel çalışmada ilk önce yalnızca pompalar rutin çalışma şeklinde çalıştırılmış ve debileri ölçülmüştür. Daha sonra cazibeli hat devreye alınmış ve yüksek basınçla gelen akışın pompalar üzerindeki etkileri gösterilmiştir. Cazibeli hattın pompalar üzerindeki etkileri sayısal olarak araştırılmıştır. Bunun için Ansys Fluent 2022 R1 yazılımı kullanılmıştır. Deneysel çalışma sonucunda pompalı hatlarla nispeten daha yüksek basınçlı hatlar birlikte çalıştırıldığında, pompalarda %48’lere varan debi kaybı olduğu tespit edilmiştir. Sayısal hesaplamalar sonucunda ise pompa hattına giren yüksek basınçlı akışların, pompaların basma yönlerinde engel oluşturarak iç basıncın artmasına ve pompa debisinin azalmasına sebep olduğu anlaşılmıştır.
Bu çalışmanın gerçekleşmesinde araştırma imkanı sunan İSKİ Genel Müdürlüğüne, gerekli kolaylığı sağlayan tüm idarecilere ve çalışma arkadaşlarıma teşekkür ederim.
References
[1] USA Hydraulic Institute, Europump and the US Department of Energy’s Office of Industrial Technologies (2001). Pump Life Cycle Costs: A Guide to LLC Analysis For Pumping Systems.
[2] Şenol, G. K., & Karakuş, C. (2017). Pompa ve Pompaj Sistemlerinde Enerji Tasarrufu Uygulamaları. Mühendis ve Makina, 58(687), 1-16.
[3] Noon, A.A., Jabbar, A.U., Koten, H., Kim, M.-H., Ahmed, H.W., Mueed, U., Shoukat, A.A., Anwar, B. (2021). Strive to reduce slurry erosion and cavitation in pumps through flow modifications, design optimization and some other techniques: long term impact on process industry. Materials, 14, 521.
[4] Guyer, J. P., P. E. ve R. A. (2013). Introduction to Pumping Stations for Water Supply Systems, California: Createspace Independent Pub.
[5] Tomor, A., & Kristof, G. (2016). Validation of a discrete model for flow distribution in dividing-flow manifolds: numerical and experimental studies. Periodica Polytechnica, Mechanical Engineering 60(1), 41-19.
[6] Minocha, N., & Joshi, J. B. (2020). 3D CFD simulation of turbulent flow distribution and pressure drop in a dividing manifold system using openfoam. International Journal of Heat and Mass Transfer, 151.
[7] Zhang, W., Li, A., Gao, R., & Li, C. (2018). Effects of geometric structures on flow uniformity and pressure drop in dividing manifold systems with parallel pipe arrays. International Journal of Heat and Mass Transfer, 127, s. 870-881.
[8] Wang, J. (2011). Theory of flow distribution in manifolds. Chemical Engineering Journal, 3(168), 1331- 1354.
[9] Quintanar, N. R., Nguyen, T., Vaghetto, R., & Hassan, Y. A. (2019). Natural circulation flow distribution within a multi-branch manifold. International Journal of Heat and Mass Transfer, Cilt 135, 1-15.
[10] Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. (2014). Modeling the uniformity of manifold with various configurations. Journal of Fluids, 1-8.
[11] Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. (2014). CFD simulation for manifold with tapered longitudinal section. International Journal of Emerging Technology and Advanced Engineering, 4(2).
[12] Yin, Y., Li A., Wen, X., Zhang, J., Zhang, X., Guo, J., Li, J., Zhang, W., Che, J. (2022). Resistance reduction of an elbow with a guide vane based on the field synergy principle and viscous dissipation analysis. Journal of Building Engineering, 54.
[13] Budiman, A. A., Haryantı, D., Subekti, M., & Kusuma, M. H. (2019). Preliminary study on fluid dynamics in manifolds of the reactor cavity cooling system - the experimental power reactor test facility. Symposium of Emerging Nuclear Technology and Engineering Novelty. South Tangerang, Indonesia.
[14] Hua, J., Zhang, S. ve Fu, L. (2017). Similitude criterion derivation and pipe physical property test and suitable analysis for water hammer scale model of long distance district heating pipeline. Applied Thermal Engineering, cilt 125, 80-90.
[15] Khalaji,M., N., Osta, M., H., 4, K., (2018). Numerical Analysis of Heat Transfer of Hot Oil and Cold Water Fluids in a Concentric Type Heat Exchanger with Ansys Fluent. International Journal of Innovative Research and Reviews, 2-2, 24-27.
Investigation of Effects On The Pumps When Using Together Gravity Mains And Force Mains In Drinking Water Transmission
Year 2023,
Volume: 35 Issue: 2, 273 - 284, 03.07.2023
At the present time, Omerli Drinking Water Treatment Facility with 1.5 million capacity makes available 48% of Istanbul's clean water need. The status of the pumps in the facility and flow measurement on pipelines are monitored immediately by remote command and control systems (SCADA - Supervisory Control and Data Acquisition). Nonetheless, it could not followed that the flow in the pipe, the collector lines or the movement of the water at the points where the measurement. In this study, the effects of using pump lines and gravity lines together on the pumps were investigated by experimental and numerical analysis. In the experimental study, at first, only the pumps were operated in routine operation and the flow rates were measured. Then, the gravity flow line coming with high pressure was put into operation and the effects of this flow on the pumps were shown. Ansys Fluent 2022 R1 software was used to see the effects of the gravity line on the pumps and understand the flow in the pipe line. In the experiment, it was detected that when pumped lines are operated together with relatively higher pressure lines, it causes a flow loss of up to 48% in pumps. In the analyzes, it has been understood that entering of high pressure flows to the pump line causes that increasing of internal pressure and decreasing of the pump flow rate.
[1] USA Hydraulic Institute, Europump and the US Department of Energy’s Office of Industrial Technologies (2001). Pump Life Cycle Costs: A Guide to LLC Analysis For Pumping Systems.
[2] Şenol, G. K., & Karakuş, C. (2017). Pompa ve Pompaj Sistemlerinde Enerji Tasarrufu Uygulamaları. Mühendis ve Makina, 58(687), 1-16.
[3] Noon, A.A., Jabbar, A.U., Koten, H., Kim, M.-H., Ahmed, H.W., Mueed, U., Shoukat, A.A., Anwar, B. (2021). Strive to reduce slurry erosion and cavitation in pumps through flow modifications, design optimization and some other techniques: long term impact on process industry. Materials, 14, 521.
[4] Guyer, J. P., P. E. ve R. A. (2013). Introduction to Pumping Stations for Water Supply Systems, California: Createspace Independent Pub.
[5] Tomor, A., & Kristof, G. (2016). Validation of a discrete model for flow distribution in dividing-flow manifolds: numerical and experimental studies. Periodica Polytechnica, Mechanical Engineering 60(1), 41-19.
[6] Minocha, N., & Joshi, J. B. (2020). 3D CFD simulation of turbulent flow distribution and pressure drop in a dividing manifold system using openfoam. International Journal of Heat and Mass Transfer, 151.
[7] Zhang, W., Li, A., Gao, R., & Li, C. (2018). Effects of geometric structures on flow uniformity and pressure drop in dividing manifold systems with parallel pipe arrays. International Journal of Heat and Mass Transfer, 127, s. 870-881.
[8] Wang, J. (2011). Theory of flow distribution in manifolds. Chemical Engineering Journal, 3(168), 1331- 1354.
[9] Quintanar, N. R., Nguyen, T., Vaghetto, R., & Hassan, Y. A. (2019). Natural circulation flow distribution within a multi-branch manifold. International Journal of Heat and Mass Transfer, Cilt 135, 1-15.
[10] Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. (2014). Modeling the uniformity of manifold with various configurations. Journal of Fluids, 1-8.
[11] Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. (2014). CFD simulation for manifold with tapered longitudinal section. International Journal of Emerging Technology and Advanced Engineering, 4(2).
[12] Yin, Y., Li A., Wen, X., Zhang, J., Zhang, X., Guo, J., Li, J., Zhang, W., Che, J. (2022). Resistance reduction of an elbow with a guide vane based on the field synergy principle and viscous dissipation analysis. Journal of Building Engineering, 54.
[13] Budiman, A. A., Haryantı, D., Subekti, M., & Kusuma, M. H. (2019). Preliminary study on fluid dynamics in manifolds of the reactor cavity cooling system - the experimental power reactor test facility. Symposium of Emerging Nuclear Technology and Engineering Novelty. South Tangerang, Indonesia.
[14] Hua, J., Zhang, S. ve Fu, L. (2017). Similitude criterion derivation and pipe physical property test and suitable analysis for water hammer scale model of long distance district heating pipeline. Applied Thermal Engineering, cilt 125, 80-90.
[15] Khalaji,M., N., Osta, M., H., 4, K., (2018). Numerical Analysis of Heat Transfer of Hot Oil and Cold Water Fluids in a Concentric Type Heat Exchanger with Ansys Fluent. International Journal of Innovative Research and Reviews, 2-2, 24-27.
Koca, A. O., & Atmaca, M. (2023). İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences, 35(2), 273-284. https://doi.org/10.7240/jeps.1248446
AMA
Koca AO, Atmaca M. İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması. JEPS. July 2023;35(2):273-284. doi:10.7240/jeps.1248446
Chicago
Koca, Ali Osman, and Mustafa Atmaca. “İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 35, no. 2 (July 2023): 273-84. https://doi.org/10.7240/jeps.1248446.
EndNote
Koca AO, Atmaca M (July 1, 2023) İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences 35 2 273–284.
IEEE
A. O. Koca and M. Atmaca, “İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması”, JEPS, vol. 35, no. 2, pp. 273–284, 2023, doi: 10.7240/jeps.1248446.
ISNAD
Koca, Ali Osman - Atmaca, Mustafa. “İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 35/2 (July 2023), 273-284. https://doi.org/10.7240/jeps.1248446.
JAMA
Koca AO, Atmaca M. İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması. JEPS. 2023;35:273–284.
MLA
Koca, Ali Osman and Mustafa Atmaca. “İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 2, 2023, pp. 273-84, doi:10.7240/jeps.1248446.
Vancouver
Koca AO, Atmaca M. İçme Suyu İletiminde Terfili Hatlarla Cazibeli Hatların Birlikte Kullanılmasının Pompalara Etkilerinin Araştırılması. JEPS. 2023;35(2):273-84.