Research Article
BibTex RIS Cite

Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae

Year 2023, Volume: 35 Issue: 3, 322 - 330, 30.09.2023
https://doi.org/10.7240/jeps.1254802

Abstract

Recent research in cancer treatment points to metformin, a drug for type 2 diabetes, as a potential anti-cancer therapeutic, as well as carbon limitation as a dietary measure. A new study, investigating effects of metformin treatment on colorectal cancer cells, pointed to the fact that response to metformin treatment depended on extracellular glucose concentration. That is why in the current study, effects of both carbon limitation and metformin treatment are explored via transcriptomics analyses. It is demonstrated that cells grown in glucose-limited and metformin treated medium had the highest variance according to transcriptional profiles, compared to individual treatments. Metformin administration, when combined with glucose restriction, downregulates proliferative pathways such as transcription initiation and ribosome biogenesis while upregulates energy derivation and autophagic mechanisms. Enrichment analyses point to an attenuated cAMP-PKA signaling pathway in the cells grown in combined treatment medium. It is proposed that combined treatment exerts its beneficial effect on this pathway, since cAMP-PKA signaling may be a potential target for pharmacological treatment of tumors.

References

  • [1] Warburg O, Wind F, Negelein E. (1927). The Metabolism of Tumors in the Body. J Gen Physiol. 7;8(6):519-30. doi: 10.1085/jgp.8.6.519. PMID: 19872213; PMCID: PMC2140820.
  • [2] Elgendy M., Cirò M., Hosseini A., Weiszmann J., Mazzarella L., Ferrari E., Cazzoli R., Curigliano G., De Censi A., Bonanni B., et al. (2019). Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3Β-MCL-1 axis. Cancer Cell. 35:798–815. doi: 10.1016/j.ccell.2019.03.007.
  • [3] Di Tano M., Raucci F., Vernieri C., Caffa I., Buono R., Fanti M., Brandhorst S., Curigliano G., Nencioni A., de Braud F., et al. (2020) Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat. Commun. 11:2332–2342. doi: 10.1038/s41467-020-16243-3.
  • [4] Wollen N, Bailey CJ. (1988). Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol. 37(22):4353-8. doi: 10.1016/0006-2952(88)90617-x. PMID: 3058129.
  • [5] Morales DR, Morris AD. (2015). Metformin in cancer treatment and prevention. Annu Rev Med. 66:17-29. doi: 10.1146/annurev-med-062613-093128. Epub 2014 Nov 6. PMID: 25386929.
  • [6] Marini C, Cossu V, Bauckneht M, Lanfranchi F, Raffa S, Orengo AM, Ravera S, Bruno S, Sambuceti G. (2021). Metformin and Cancer Glucose Metabolism: At the Bench or at the Bedside? Biomolecules. 11(8):1231. doi: 10.3390/biom11081231. PMID: 34439897; PMCID: PMC8392176.
  • [7] Alhourani AH, Tidwell TR, Bokil AA, Røsland GV, Tronstad KJ, Søreide K, Hagland HR. (2021). Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep. 11(1):10487. doi: 10.1038/s41598-021-89861-6. [8] Cazzanelli G, Pereira F, Alves S, Francisco R, Azevedo L, Dias Carvalho P, Almeida A, Côrte-Real M, Oliveira MJ, Lucas C, Sousa MJ, Preto A. (2018). The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells. 7(2):14. doi: 10.3390/cells7020014. PMID: 29463063; PMCID: PMC5850102.
  • [9] Matuo R, Sousa FG, Soares DG, Bonatto D, Saffi J, Escargueil AE, Larsen AK, Henriques JA. (2012). Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol. 70(4):491-502. doi: 10.1007/s00280-012-1937-4. Epub 2012 Aug 1. PMID: 22851206.
  • [10] Pizzul P, Casari E, Gnugnoli M, Rinaldi C, Corallo F, Longhese MP. (2022). The DNA damage checkpoint: A tale from budding yeast. Front Genet. 13:995163. doi: 10.3389/fgene.2022.995163. PMID: 36186482; PMCID: PMC9520983.
  • [11] Kondo Y, Kanzawa T, Sawaya R, Kondo S. (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 5(9):726-34. doi: 10.1038/nrc1692. PMID: 16148885.
  • [12] Moosavi B, Gao M, Zhu XL, Yang GF. (2020). The anti-cancer compound Schweinfurthin A targets Osh2 and disrupts lipid metabolism in the yeast model. Bioorg Chem. 94:103471. doi: 10.1016/j.bioorg.2019.103471. Epub 2019 Nov 25. PMID: 31813476.
  • [13] Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. (2018). Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 8(1):13672. doi: 10.1038/s41598-018-31939-9. PMID: 30209405; PMCID: PMC6135803.
  • [14] Simon JA. (2001). Yeast as a model system for anticancer drug discovery. Expert Opin Ther Targets. 5(2):177-95. doi: 10.1517/14728222.5.2.177. PMID: 15992175.
  • [15] Li C, Wong WH. (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 98(1):31-6. doi: 10.1073/pnas.98.1.31. PMID: 11134512; PMCID: PMC14539.
  • [16] Gautier L, Cope L, Bolstad BM, Irizarry RA. (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20(3):307-15. doi: 10.1093/bioinformatics/btg405. PMID: 14960456.
  • [17] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1):W191-W198. doi: 10.1093/nar/gkz369. PMID: 31066453; PMCID: PMC6602461.
  • [18] Reich M, Ohm K, Angelo M, Tamayo P, Mesirov JP. (2004). GeneCluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics. 20(11):1797-8. doi: 10.1093/bioinformatics/bth138. Epub 2004 Feb 26. PMID: 14988123.
  • [19] Teixeira MC, Viana R, Palma M, Oliveira J, Galocha M, Mota MN, Couceiro D, Pereira MG, Antunes M, Costa IV, Pais P, Parada C, Chaouiya C, Sá-Correia I, Monteiro PT. (2023). YEASTRACT+: a portal for the exploitation of global transcription regulation and metabolic model data in yeast biotechnology and pathogenesis. Nucleic Acids Res. 51(D1):D785-D791. doi: 10.1093/nar/gkac1041. PMID: 36350610; PMCID: PMC9825512.
  • [20] Oliveira AP, Patil KR, Nielsen J. (2008). Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol. 2:17. doi: 10.1186/1752-0509-2-17. PMID: 18261202; PMCID: PMC2268660.
  • [21] Marchesi F, Vignali D, Manini B, Rigamonti A, Monti P. (2020). Manipulation of Glucose Availability to Boost Cancer Immunotherapies. Cancers (Basel). 12(10):2940. doi: 10.3390/cancers12102940. PMID: 33053779; PMCID: PMC7650629.
  • [22] Borklu-Yucel E, Eraslan S, Ulgen KO. (2015). Transcriptional remodeling in response to transfer upon carbon-limited or metformin-supplemented media in S. cerevisiae and its effect on chronological life span. Appl Microbiol Biotechnol. 99(16):6775-89. doi: 10.1007/s00253-015-6728-5. Epub 2015 Jun 23. PMID: 26099330.
  • [23] Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. (2020). Ribosome Biogenesis Alterations in Colorectal Cancer. Cells. 9(11):2361. doi: 10.3390/cells9112361. PMID: 33120992; PMCID: PMC7693311.
  • [24] Szymczak-Pajor I, Wenclewska S, Śliwińska A. (2022). Metabolic Action of Metformin. Pharmaceuticals (Basel). 15(7):810. doi: 10.3390/ph15070810. PMID: 35890109; PMCID: PMC9317619.
  • [25] Alexander, M. A. and T. W. Jeffries. (1990). Respiratory Efficiency and Metabolite Partitioning as Regulatory Phenomena in Yeasts. Enzyme and Microbial Technology. 12 (1): pp. 2–19.
  • [26] Diaz-Ruiz R, Rigoulet M, Devin A. (2011). The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 1807(6):568-76. doi: 10.1016/j.bbabio.2010.08.010. Epub 2010 Sep 8. PMID: 20804724.
  • [27] Li YJ, Fahrmann JF, Aftabizadeh M, Zhao Q, Tripathi SC, Zhang C, Yuan Y, Ann D, Hanash S, Yu H. (2022). Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep. 39(9):110870. doi: 10.1016/j.celrep.2022.110870. Erratum in: Cell Rep. 2022 Jun 28;39(13):111044. PMID: 35649368.
  • [28] Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. (2019). Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells. 8(6):547. doi: 10.3390/cells8060547. PMID: 31174324; PMCID: PMC6627963.
  • [29] Leone A, Nigro C, Nicolò A, Prevenzano I, Formisano P, Beguinot F, Miele C. (2021). The Dual-Role of Methylglyoxal in Tumor Progression - Novel Therapeutic Approaches. Front Oncol. 11:645686. doi: 10.3389/fonc.2021.645686. PMID: 33869040; PMCID: PMC8044862.
  • [30] Powers T, Walter P. (1999). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 10(4):987-1000. doi: 10.1091/mbc.10.4.987. PMID: 10198052; PMCID: PMC25225.
  • [31] Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11(5):390-401. doi: 10.1016/j.cmet.2010.03.014. PMID: 20444419; PMCID: PMC3081779.
  • [32] Nishiyama A, Nakanishi M. (2021). Navigating the DNA methylation landscape of cancer. Trends Genet. 37(11):1012-1027. doi: 10.1016/j.tig.2021.05.002. Epub 2021 Jun 10. PMID: 34120771.
  • [33] Portela P, Rossi S. (2020). cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae. Curr Genet. 66(6):1093-1099. doi: 10.1007/s00294-020-01107-6. Epub 2020 Sep 15. PMID: 32935175.
  • [34] Thevelein JM, de Winde JH. (1999). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 33(5):904-18. doi: 10.1046/j.1365-2958.1999.01538.x. PMID: 10476026.
  • [35] Labuzek K, Liber S, Gabryel B, Adamczyk J, Okopień B. (2010). Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia. Naunyn Schmiedebergs Arch Pharmacol. 381(2):171-86. doi: 10.1007/s00210-009-0477-x. Epub 2009 Dec 11. Erratum in: Naunyn Schmiedebergs Arch Pharmacol. 2017 Mar;390(3):329-330. PMID: 20012266.
  • [36] Lagadic-Gossmann D, Huc L, Lecureur V. (2004). Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 11(9):953-61. doi: 10.1038/sj.cdd.4401466. PMID: 15195071.
  • [37] Pautasso C, Rossi S. (2014). Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: autoregulatory role of the kinase A activity. Biochim Biophys Acta. 1839(4):275-87. doi: 10.1016/j.bbagrm.2014.02.005. Epub 2014 Feb 14. PMID: 24530423.
  • [38] Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, Gordan JD. (2023). Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. Elife. 12:e69521. doi: 10.7554/eLife.69521. PMID: 36692000; PMCID: PMC9925115.
  • [39] Wu N, Gu C, Gu H, et al. (2011). Metformin induces apoptosis of lung cancer cells through activating jnk/p38 mapk pathway and gadd153. Neoplasma. 58(6):482–90.

Glikozu Kısıtlı Hücrelere Uygulanan Metformin Tedavisi ile S. cerevisiae'de PKA Yolağının Baskılanması

Year 2023, Volume: 35 Issue: 3, 322 - 330, 30.09.2023
https://doi.org/10.7240/jeps.1254802

Abstract

Kanser tedavisindeki son araştırmalar, tip 2 diyabet tedavisi için kullanılan metforminin potansiyel bir kanser önleyici terapötik olduğunu ve ayrıca bir diyet önlemi olarak karbon sınırlamasının önemini işaret etmektedir. Metformin tedavisinin kolorektal kanser hücreleri üzerindeki etkilerini araştıran yeni bir çalışma, metformin tedavisine verilen yanıtın hücre dışı glikoz konsantrasyonuna bağlı olduğu gerçeğini ortaya koymuştur. Bu nedenle bu çalışmada hem karbon sınırlamasının hem de metformin tedavisinin etkileri transkriptomik analizlerle araştırılmıştır. Glikoz-sınırlı ve metformin ile tedavi görmüş ortamda büyütülen hücrelerin, bireysel tedavilere kıyasla transkripsiyonel profillere göre en yüksek varyansa sahip olduğu gösterilmiştir. Metformin tedavisi, glikoz kısıtlaması ile birleştirildiğinde, transkripsiyon başlangıcı ve ribozom biyogenezi gibi proliferatif yolakları baskılarken, enerji ortaya çıkışı ve otofajik mekanizmaları tetiklemiştir. Gen ontolojisi zenginleştirme analizleri, kombine tedavi ortamında büyütülen hücrelerde zayıflamış bir cAMP-PKA sinyal yolağına işaret etmektedir. cAMP-PKA sinyal yolağı, tümörlerin farmakolojik tedavisi için potansiyel bir hedef olabileceğinden, kombine tedavinin yararlı etkisini bu yolak üzerinden gösterdiği düşünülmektedir.

References

  • [1] Warburg O, Wind F, Negelein E. (1927). The Metabolism of Tumors in the Body. J Gen Physiol. 7;8(6):519-30. doi: 10.1085/jgp.8.6.519. PMID: 19872213; PMCID: PMC2140820.
  • [2] Elgendy M., Cirò M., Hosseini A., Weiszmann J., Mazzarella L., Ferrari E., Cazzoli R., Curigliano G., De Censi A., Bonanni B., et al. (2019). Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3Β-MCL-1 axis. Cancer Cell. 35:798–815. doi: 10.1016/j.ccell.2019.03.007.
  • [3] Di Tano M., Raucci F., Vernieri C., Caffa I., Buono R., Fanti M., Brandhorst S., Curigliano G., Nencioni A., de Braud F., et al. (2020) Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat. Commun. 11:2332–2342. doi: 10.1038/s41467-020-16243-3.
  • [4] Wollen N, Bailey CJ. (1988). Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol. 37(22):4353-8. doi: 10.1016/0006-2952(88)90617-x. PMID: 3058129.
  • [5] Morales DR, Morris AD. (2015). Metformin in cancer treatment and prevention. Annu Rev Med. 66:17-29. doi: 10.1146/annurev-med-062613-093128. Epub 2014 Nov 6. PMID: 25386929.
  • [6] Marini C, Cossu V, Bauckneht M, Lanfranchi F, Raffa S, Orengo AM, Ravera S, Bruno S, Sambuceti G. (2021). Metformin and Cancer Glucose Metabolism: At the Bench or at the Bedside? Biomolecules. 11(8):1231. doi: 10.3390/biom11081231. PMID: 34439897; PMCID: PMC8392176.
  • [7] Alhourani AH, Tidwell TR, Bokil AA, Røsland GV, Tronstad KJ, Søreide K, Hagland HR. (2021). Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep. 11(1):10487. doi: 10.1038/s41598-021-89861-6. [8] Cazzanelli G, Pereira F, Alves S, Francisco R, Azevedo L, Dias Carvalho P, Almeida A, Côrte-Real M, Oliveira MJ, Lucas C, Sousa MJ, Preto A. (2018). The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells. 7(2):14. doi: 10.3390/cells7020014. PMID: 29463063; PMCID: PMC5850102.
  • [9] Matuo R, Sousa FG, Soares DG, Bonatto D, Saffi J, Escargueil AE, Larsen AK, Henriques JA. (2012). Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol. 70(4):491-502. doi: 10.1007/s00280-012-1937-4. Epub 2012 Aug 1. PMID: 22851206.
  • [10] Pizzul P, Casari E, Gnugnoli M, Rinaldi C, Corallo F, Longhese MP. (2022). The DNA damage checkpoint: A tale from budding yeast. Front Genet. 13:995163. doi: 10.3389/fgene.2022.995163. PMID: 36186482; PMCID: PMC9520983.
  • [11] Kondo Y, Kanzawa T, Sawaya R, Kondo S. (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 5(9):726-34. doi: 10.1038/nrc1692. PMID: 16148885.
  • [12] Moosavi B, Gao M, Zhu XL, Yang GF. (2020). The anti-cancer compound Schweinfurthin A targets Osh2 and disrupts lipid metabolism in the yeast model. Bioorg Chem. 94:103471. doi: 10.1016/j.bioorg.2019.103471. Epub 2019 Nov 25. PMID: 31813476.
  • [13] Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. (2018). Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 8(1):13672. doi: 10.1038/s41598-018-31939-9. PMID: 30209405; PMCID: PMC6135803.
  • [14] Simon JA. (2001). Yeast as a model system for anticancer drug discovery. Expert Opin Ther Targets. 5(2):177-95. doi: 10.1517/14728222.5.2.177. PMID: 15992175.
  • [15] Li C, Wong WH. (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 98(1):31-6. doi: 10.1073/pnas.98.1.31. PMID: 11134512; PMCID: PMC14539.
  • [16] Gautier L, Cope L, Bolstad BM, Irizarry RA. (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20(3):307-15. doi: 10.1093/bioinformatics/btg405. PMID: 14960456.
  • [17] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1):W191-W198. doi: 10.1093/nar/gkz369. PMID: 31066453; PMCID: PMC6602461.
  • [18] Reich M, Ohm K, Angelo M, Tamayo P, Mesirov JP. (2004). GeneCluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics. 20(11):1797-8. doi: 10.1093/bioinformatics/bth138. Epub 2004 Feb 26. PMID: 14988123.
  • [19] Teixeira MC, Viana R, Palma M, Oliveira J, Galocha M, Mota MN, Couceiro D, Pereira MG, Antunes M, Costa IV, Pais P, Parada C, Chaouiya C, Sá-Correia I, Monteiro PT. (2023). YEASTRACT+: a portal for the exploitation of global transcription regulation and metabolic model data in yeast biotechnology and pathogenesis. Nucleic Acids Res. 51(D1):D785-D791. doi: 10.1093/nar/gkac1041. PMID: 36350610; PMCID: PMC9825512.
  • [20] Oliveira AP, Patil KR, Nielsen J. (2008). Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol. 2:17. doi: 10.1186/1752-0509-2-17. PMID: 18261202; PMCID: PMC2268660.
  • [21] Marchesi F, Vignali D, Manini B, Rigamonti A, Monti P. (2020). Manipulation of Glucose Availability to Boost Cancer Immunotherapies. Cancers (Basel). 12(10):2940. doi: 10.3390/cancers12102940. PMID: 33053779; PMCID: PMC7650629.
  • [22] Borklu-Yucel E, Eraslan S, Ulgen KO. (2015). Transcriptional remodeling in response to transfer upon carbon-limited or metformin-supplemented media in S. cerevisiae and its effect on chronological life span. Appl Microbiol Biotechnol. 99(16):6775-89. doi: 10.1007/s00253-015-6728-5. Epub 2015 Jun 23. PMID: 26099330.
  • [23] Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. (2020). Ribosome Biogenesis Alterations in Colorectal Cancer. Cells. 9(11):2361. doi: 10.3390/cells9112361. PMID: 33120992; PMCID: PMC7693311.
  • [24] Szymczak-Pajor I, Wenclewska S, Śliwińska A. (2022). Metabolic Action of Metformin. Pharmaceuticals (Basel). 15(7):810. doi: 10.3390/ph15070810. PMID: 35890109; PMCID: PMC9317619.
  • [25] Alexander, M. A. and T. W. Jeffries. (1990). Respiratory Efficiency and Metabolite Partitioning as Regulatory Phenomena in Yeasts. Enzyme and Microbial Technology. 12 (1): pp. 2–19.
  • [26] Diaz-Ruiz R, Rigoulet M, Devin A. (2011). The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 1807(6):568-76. doi: 10.1016/j.bbabio.2010.08.010. Epub 2010 Sep 8. PMID: 20804724.
  • [27] Li YJ, Fahrmann JF, Aftabizadeh M, Zhao Q, Tripathi SC, Zhang C, Yuan Y, Ann D, Hanash S, Yu H. (2022). Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep. 39(9):110870. doi: 10.1016/j.celrep.2022.110870. Erratum in: Cell Rep. 2022 Jun 28;39(13):111044. PMID: 35649368.
  • [28] Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. (2019). Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells. 8(6):547. doi: 10.3390/cells8060547. PMID: 31174324; PMCID: PMC6627963.
  • [29] Leone A, Nigro C, Nicolò A, Prevenzano I, Formisano P, Beguinot F, Miele C. (2021). The Dual-Role of Methylglyoxal in Tumor Progression - Novel Therapeutic Approaches. Front Oncol. 11:645686. doi: 10.3389/fonc.2021.645686. PMID: 33869040; PMCID: PMC8044862.
  • [30] Powers T, Walter P. (1999). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 10(4):987-1000. doi: 10.1091/mbc.10.4.987. PMID: 10198052; PMCID: PMC25225.
  • [31] Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11(5):390-401. doi: 10.1016/j.cmet.2010.03.014. PMID: 20444419; PMCID: PMC3081779.
  • [32] Nishiyama A, Nakanishi M. (2021). Navigating the DNA methylation landscape of cancer. Trends Genet. 37(11):1012-1027. doi: 10.1016/j.tig.2021.05.002. Epub 2021 Jun 10. PMID: 34120771.
  • [33] Portela P, Rossi S. (2020). cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae. Curr Genet. 66(6):1093-1099. doi: 10.1007/s00294-020-01107-6. Epub 2020 Sep 15. PMID: 32935175.
  • [34] Thevelein JM, de Winde JH. (1999). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 33(5):904-18. doi: 10.1046/j.1365-2958.1999.01538.x. PMID: 10476026.
  • [35] Labuzek K, Liber S, Gabryel B, Adamczyk J, Okopień B. (2010). Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia. Naunyn Schmiedebergs Arch Pharmacol. 381(2):171-86. doi: 10.1007/s00210-009-0477-x. Epub 2009 Dec 11. Erratum in: Naunyn Schmiedebergs Arch Pharmacol. 2017 Mar;390(3):329-330. PMID: 20012266.
  • [36] Lagadic-Gossmann D, Huc L, Lecureur V. (2004). Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 11(9):953-61. doi: 10.1038/sj.cdd.4401466. PMID: 15195071.
  • [37] Pautasso C, Rossi S. (2014). Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: autoregulatory role of the kinase A activity. Biochim Biophys Acta. 1839(4):275-87. doi: 10.1016/j.bbagrm.2014.02.005. Epub 2014 Feb 14. PMID: 24530423.
  • [38] Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, Gordan JD. (2023). Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. Elife. 12:e69521. doi: 10.7554/eLife.69521. PMID: 36692000; PMCID: PMC9925115.
  • [39] Wu N, Gu C, Gu H, et al. (2011). Metformin induces apoptosis of lung cancer cells through activating jnk/p38 mapk pathway and gadd153. Neoplasma. 58(6):482–90.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Esra Börklü 0000-0002-1326-0608

Early Pub Date September 25, 2023
Publication Date September 30, 2023
Published in Issue Year 2023 Volume: 35 Issue: 3

Cite

APA Börklü, E. (2023). Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae. International Journal of Advances in Engineering and Pure Sciences, 35(3), 322-330. https://doi.org/10.7240/jeps.1254802
AMA Börklü E. Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae. JEPS. September 2023;35(3):322-330. doi:10.7240/jeps.1254802
Chicago Börklü, Esra. “Metformin Administration to Glucose-Restricted Cells Attenuates PKA Signaling in S. Cerevisiae”. International Journal of Advances in Engineering and Pure Sciences 35, no. 3 (September 2023): 322-30. https://doi.org/10.7240/jeps.1254802.
EndNote Börklü E (September 1, 2023) Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae. International Journal of Advances in Engineering and Pure Sciences 35 3 322–330.
IEEE E. Börklü, “Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae”, JEPS, vol. 35, no. 3, pp. 322–330, 2023, doi: 10.7240/jeps.1254802.
ISNAD Börklü, Esra. “Metformin Administration to Glucose-Restricted Cells Attenuates PKA Signaling in S. Cerevisiae”. International Journal of Advances in Engineering and Pure Sciences 35/3 (September 2023), 322-330. https://doi.org/10.7240/jeps.1254802.
JAMA Börklü E. Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae. JEPS. 2023;35:322–330.
MLA Börklü, Esra. “Metformin Administration to Glucose-Restricted Cells Attenuates PKA Signaling in S. Cerevisiae”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 3, 2023, pp. 322-30, doi:10.7240/jeps.1254802.
Vancouver Börklü E. Metformin Administration to Glucose-restricted Cells Attenuates PKA Signaling in S. cerevisiae. JEPS. 2023;35(3):322-30.