Research Article
BibTex RIS Cite

Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi

Year 2023, Volume: 35 Issue: 4, 428 - 438, 31.12.2023
https://doi.org/10.7240/jeps.1284405

Abstract

Bu çalışmada, (1,4-fenilenbis(metilen))bis(fosfonik asit) ligandı (H4L) ve katmanlı yapıya sahip bakır organodifosfonat polimeri, [Cu2(C8H8O6P2)(H2O)2]n (1), sentezlenmiştir. Sentezlenen bileşiklerin yapıları çeşitli spektroskopik ve analitik yöntemler kullanılarak karakterize edilmiştir. Tek kristal X-ray analizi sonucunda 1 nolu bileşiğin üç boyutlu ve sütunlu tabaka yapısında organik/inorganik katmanlardan oluştuğu gözlenmiştir. Monoklinik kristal sistemi ve P21/c uzay grubunda olan bileşik 1'in hücre parametreleri a = 10.8142(9) Å, b = 7.5839(6) Å, c = 7.3991(6) Å, V = 606.26(9) Å3 ve Z= 4'tür. Polimer zinciri içinde her bir bakır atomu toplam beş koordinasyona sahip olup kısmen bozulmuş kare piramit geometridedir. 1 polimerinin heterojen katalitik aktivitesi ve termal özellikleri incelenmiştir. TG analizi sonuncunda katalizörün 200 ᵒC sıcaklığa kadar termal kararlılığa sahip olduğu gözlenmiştir. TBHP kullanarak 60 ᵒC sıcaklıkta ve 12 saat sonunda %92.37 timol dönüşümü meydana gelmiştir.

Supporting Institution

-

Project Number

-

Thanks

Tek kristal X-ray yapı çözümlemesinde verdiği destekten dolayı Prof. Dr. Onur ŞAHİN’e ve Bruker D8 QUEST difraktometrenin kullanımı için Sinop Üniversitesi Bilimsel ve Teknolojik Araştırma Uygulama ve Araştırma Merkezi'ne teşekkür ederim. Katalizör mekanizmasının önerilmesinde önemli katkılar sağlayan Öğr. Gör. Serkan KARACA’ya (Çukurova Üniversitesi) teşekkür ederim.

References

  • [1] Jones, S., Liu, H., Schmidtke, K., O’Connor, C.C. ve Zubieta, J. (2010). A bimetallic oxide framework,[{Cu(bpy)}2Mo4O10(O3PCH2C6H4CH2PO3)2], constructed from novel {Mo4O10(O3PR)4}n4n- chains. Inorg. Chem. Commun., 13, 298-301.
  • [2] DeBurgomaster, P., Liu, H., O’Connor, C.J. ve Zubieta, J. (2010). Hydrothermal synthesis and structural characterization of bimetallic organic-inorganic hybrid materials: Copper vanadate-1,4-Carboxy-phenylphosphonate phases. Inorg. Chim. Acta, 363, 330-337.
  • [3] Mitzi, D.B. (2001). Templating and structural engineering in organic-inorganic perovskites. Dalton Trans., 1, 1-12.
  • [4] Furukawa, H. ve Yaghi, O.M. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc., 131, 8875-8883.
  • [5] Yaghi, O.M. (2007). Metal-organic frameworks: a tale of two entanglements. Nat Mater., 6(2). 92-3.
  • [6] Rowsell, J.L. ve Yaghi, O.M. (2005). Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 44(30), 4670-9.
  • [7] Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M. ve Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-14.
  • [8] Ferey, G. (2009). Some suggested perspectives for multifunctional hybrid porous solids. Dalton Trans., 23, 4400-4415.
  • [9] Ferey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214.
  • [10] Fukushima, T., Horike, S., Kobayashi, H., Tsujimoto, M., Isoda, S., Foo, M.L., Kubota, Y., Takata, M. ve Kitagawa, S. (2012). Modular Design of Domain Assembly in Porous Coordination Polymer Crystals via Reactivity-Directed Crystallization Process. J. Am. Chem. Soc., 32, 13341-13347.
  • [11] Kitagawa, S. ve Matsuda, R. (2007). Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev., 251, 2490-2509.
  • [12] DeBurgomaster, P., Liu, H., O’Connor, C.J. ve Zubieta, J. (2010). Metal-organophosphonates: hydrothermal synthesis and structures of [Cu(O3PC10H6CO2H)] and [Cu(bpy) (HO3PC10H6CO2)] (H2O3PC10H6CO2H = 2,6-carboxynaphthalene phosphonic acid). Inorg. Chim. Acta, 363, 1654-1658.
  • [13] Greenfield, T.J., Takemoto, T., Cano, J., Lloret, F., Julve, M., Zubieta, J. ve Doyle, R.P. (2019). A methylenediphosphonate bridged copper(II) tetramer: Synthesis, structural, thermal, and magnetic characterization of [Cu4(H2O)2(phen)4(μ-P2O6CH2)2].21H2O. Polyhedron, 169, 162-168.
  • [14] Clearfield, A. (2012). Metal Phosphonate Chemistry from Synthesis to Applications, Demadis, K. (ed.), 1. baskı, Royal Society of Chemistry, London, United Kingdom, s. 675.
  • [15] Lopez, V., Minichelli, J., Case, D., Ruhlandt, K., Doyle, R.P. ve Zubieta, J. (2020). Hydrothermal synthesis and structure of a two-dimensional Fe(III)-organodiphosphonate compound,[Fe(O3PCH2C6H4CH2PO3H)(H2O)], and an Expansion of the Harris Notation. Inorg. Chim. Acta, 506, 119518.
  • [16] Güllü, E.B. ve Avcı, G. (2013). Timokinon: Nigella Sativa’nın Biyoaktif Komponenti, Kocatepe Vet. J., 6(1), 51-61.
  • [17] Yanaroğlu, S. (2011). Çörekotunun (Nigella Sativa L.) Biyolojik Etkileri Üzerine Bir Araştırma, Yüksek Lisans Tezi, Yakın Doğu Üniversitesi, Lefkoşa, s. 7-10.
  • [18] Al-Gaby, A. M. (1998). Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein. Nahrung, 42, 290-4.
  • [19] Mohamed Abdel-Fattah, A-F. M., Matsumoto, K. ve Watanabe, H. (2000). Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur. J. Pharmacol., 400, 89-97.
  • [20] Jaswal, A., Sinha, N., Bhadauria, M., Shrivastava, S. ve Shukla, S. (2013). Therapeutic potential of thymoqinone against anti-tuberculosis drugs induced liver damage. Environ. Toxicol. Pharmacol., 36, 779-786.
  • [21] Aljabre, S.H.M., Randhawa, M.A., Akhtar, N., Alakloby, O. M., Alqurashi, A.M. ve Aldossary, A. (2005). Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. J. Ethnopharmacol., 101, 116-119.
  • [22] Jrah-Harzallah, H., Ben-Hadj-Khalifa, S., Almawi, W. Y., Maaloul, A., Houas, Z. ve Mahjoub, T. (2013). Effect of thymoquinone on 1,2-dimethyl-hydrazine-induced oxidative stress during initiation and promotion of colon carcinogenesis. Eur. J. Cancer, 49, 1127-1135.
  • [23] Lei, X., Lv, X., Liu, M., Yang, Z., Ji, M., Guo, X. ve Dong, W. (2012). Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun., 417, 864-868.
  • [24] Ravindran, J., Nair, H. B., Sung, B., Prasad, S., Tekmal, R. R. ve Aggarwal, B. B. (2010). Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochem. Pharmacol., 79, 1640-1647.
  • [25] Woo, C.C., Kumar, A.P., Sethi, G. ve Tan, K.H.B. (2012). Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 83, 443-451.
  • [26] Sheldrick, G.M. (2008). A short history of SHELX. Acta Cryst., A64, 112-122.
  • [27] Sheldrick, G. M. (2015) Crystal structure refinement with SHELXL. Acta Cryst., C71, 3-8. [28] APEX2, (2013). Bruker AXS Inc. Madison Wisconsin USA.
  • [29] Arnold, D.I., Ouyang, X. ve Clearfield, A. (2002). Synthesis and Crystal Structures of Copper(II) Diphosphonatoalkanes:  C4 and C5. Chem. Mater., 5, 2020-2027.
  • [30] Thorat, P.B., Goswami, S.V., Magar, R.L., Patil, B.R. ve Bhusare, S.R. (2013). An Efficient Organocatalysis: A One-Pot Highly Enantioselective Synthesis of α-Aminophosphonates. Eur. J. Org. Chem., 45(3), 5509-5516.
  • [31] Gomez-Alcantra, M.M., Cabeza, A., Martinez-Lara, M., Aranda, M.A.G., Suau, R., Bhuvanesh, N. ve Clearfield, A. (2004). Synthesis and Characterization of a New Bisphosphonic Acid and Several Metal Hybrids Derivatives. Inorg. Chem., 43, 5283-5293.
  • [32] Ortiz-Avila, C.Y., Bhardwaj, C. ve Clearfield, A. (1994). Zirconium Polyimine Phosphonates, a New Class of Remarkable Complexing Agents. Inorg. Chem., 33, 2499-2500.
  • [33] Demirci, F., Berber, H. ve İşcan, G. (2008). Biyokatalizörler yardımıyla p-simen’den timokinon ve benzeri biyoaktif metabolitlerin üretimi (TÜBİTAK, Proje No: 106T117).
  • [34] Neves, M.B.C., Tome, J.P.C., Hou, Z., Dehaen, W., Hoogenboom, R., Neves, M.G.P.M.S. ve Simoes, M.M.Q. (2018). Oxidation of Monoterpenes Catalysed by aWater-Soluble MnIII PEG-Porphyrin in aBiphasic Medium. ChemCatChem., 10(13), 2804-2809.
  • [35] Martins, R.L., Neves, M.G.P.M.S., Silvestre, A.J.D. ve Silva, A.M.S. (1999). Oxidation of aromatic monoterpenes with hydrogen peroxide catalysed by Mn(III)/porphyrin complexes. J. Mol. Catal. A Chem., 137, 41-47.
  • [36] Skrobot, F.C., Valente, A.A., Neves, G., Rosa, I., Rocha, J. ve Cavaleiro, J.A.S. (2003). Monoterpenes oxidation in the presence of Y zeolite-entrapped manganese(III) tetra(4-N-benzylpyridyl)porphyrin. J. Mol. Catal. A Chem., 201, 211-222.
  • [37] Santos, I.C.M.S., Simoes, M.M.Q., Pereira, M.M.M.S., Martins, R.R.L., Neves, M.G.P.M. S., Cavaleiro, J.A.S. ve Cavaleiro, A.M.V. (2003). Oxidation of monoterpenes with hydrogen peroxide catalysed by Keggin-type tungstoborates. J. Mol. Catal. A Chem., 195, 253-262. [38] Günay, T., Çimen, Y., Karabacak, R.B. ve Türk, H. (2016). Oxidation of Thymol and Carvacrol to Thymoquinone with KHSO5 Catalyzed by Iron Phthalocyanine Tetrasulfonate in a Methanol-Water Mixture. Catal. Letters, 146, 2306-2312.
  • [39] Milos, M. (2001). A comparative study of biomimetic oxidation of oregano essential oil by H2O2 or KHSO5 catalyzed by Fe (III) meso-tetraphenylporphyrin or Fe (III) phthalocyianine. Appl. Catal. A Gen., 2016(1), 157-161.
  • [40] Ay, B., Yag, G., Yildiz, E. ve Rheingold, A.L. (2015). Hydrothermal synthesis and characterization of {[Ni2(NA)4(µ-H2O)].2H2O}n (HNA = nicotinic acid) and its heterogeneous catalytic Effect. Polyhedron, 88, 164-169.
  • [41] Ay, B., Yildiz, E., Jones, S. ve Zubieta, J. (2012). Hydrothermal synthesis of a novel µ-dihydroxo-bis(2,6-pyridinedicarboxylatoaqu-achromium(III)) complex and investigation of its catalytic activity. Inorg. Chim. Acta, 387, 15-19.
  • [42] Ay, B., Takano, R., Ishida, T. ve Yildiz, E. (2022). Tricopper(II)bis(2-((hydrogen phosphonato)methyl)benzylphosphonate) as a layered oxo-bridged copper(II) coordination polymer: Synthesis, structure, magnetic property, and catalytic activity. Polyhedron, 225, 116038.
  • [43] Ay, B., Yildiz, E. ve Kani, İ. (2017). Two novel isostructural and heteroleptic Nd(III) and Dy(III)-organic frameworks constructed by 2,5-pyridinedicarboxylic acid and in situ generated 2-pyridinecarboxylic acid: Hydrothermal synthesis, characterization, photoluminescence properties and heterogeneous catalytic activities. Polyhedron, 130, 165-175.
  • [44] Ay, B., Yildiz, E., Felts, A.C. ve Abboud, K.A. (2016). Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework. J. Solid State Chem., 244, 61-68.
  • [45] Ay, B., Yildiz, E., Protasiewicz, J.D. ve Rheingold, A.L. (2013). Hydrothermal synthesis, crystal structure and heterogeneous catalytic activity of a novel inorganic-organic hybrid complex, possessing infinite La-O-La linkages. Inorg. Chim. Acta, 399, 208-213.
  • [46] Dare, N.A., Brammer, L., Bourne, S.A. ve Egan, T.J. (2018). Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal-Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg. Chem., 57, 1171-1183. Kani, İ. (2023). Oxidation of thymol catalysed by a water-soluble Cu (II)-adipate-diphenylamine complex in a biphasic medium. Polyhedron, 230, 116237.

Synthesis, Characterization, Investigation of Catalytic and Thermal Properties of Three-Dimensional and Layered Copper Organodiphosphonate Coordination Polymer

Year 2023, Volume: 35 Issue: 4, 428 - 438, 31.12.2023
https://doi.org/10.7240/jeps.1284405

Abstract

In this study, (1,4-phenylenebis(methylene))bis(phosphonic acid) ligand (H4L) and its pillared layered copper organodiphosphonate polymer, [Cu2(C8H8O6P2)(H2O)2]n (1), have been synthesized. The structures of the synthesized compounds have been characterized using various spectroscopic and analytical methods. As a result of single crystal X-ray analysis, compound 1 consists of organic/inorganic layers in a three-dimensional and columnar layer structure. This compound crystallizes in the monoclinic space group P21/c, with cell parameters, a = 10.8142(9) Å, b = 7.5839(6) Å, c = 7.3991(6) Å, V = 606.26(9) Å3 and Z= 4. Each copper atom in the polymeric chain has a total of five coordination and is in a partially distorted square pyramid geometry. The heterogeneous catalytic activity and thermal property of 1 have been investigated. TG analysis showed that the catalyst has thermal stability up to 200 ᵒC. By using TBHP, 92.37% thymol conversion occurred at 60 ᵒC and after 12 hours.

Project Number

-

References

  • [1] Jones, S., Liu, H., Schmidtke, K., O’Connor, C.C. ve Zubieta, J. (2010). A bimetallic oxide framework,[{Cu(bpy)}2Mo4O10(O3PCH2C6H4CH2PO3)2], constructed from novel {Mo4O10(O3PR)4}n4n- chains. Inorg. Chem. Commun., 13, 298-301.
  • [2] DeBurgomaster, P., Liu, H., O’Connor, C.J. ve Zubieta, J. (2010). Hydrothermal synthesis and structural characterization of bimetallic organic-inorganic hybrid materials: Copper vanadate-1,4-Carboxy-phenylphosphonate phases. Inorg. Chim. Acta, 363, 330-337.
  • [3] Mitzi, D.B. (2001). Templating and structural engineering in organic-inorganic perovskites. Dalton Trans., 1, 1-12.
  • [4] Furukawa, H. ve Yaghi, O.M. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc., 131, 8875-8883.
  • [5] Yaghi, O.M. (2007). Metal-organic frameworks: a tale of two entanglements. Nat Mater., 6(2). 92-3.
  • [6] Rowsell, J.L. ve Yaghi, O.M. (2005). Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 44(30), 4670-9.
  • [7] Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M. ve Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-14.
  • [8] Ferey, G. (2009). Some suggested perspectives for multifunctional hybrid porous solids. Dalton Trans., 23, 4400-4415.
  • [9] Ferey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214.
  • [10] Fukushima, T., Horike, S., Kobayashi, H., Tsujimoto, M., Isoda, S., Foo, M.L., Kubota, Y., Takata, M. ve Kitagawa, S. (2012). Modular Design of Domain Assembly in Porous Coordination Polymer Crystals via Reactivity-Directed Crystallization Process. J. Am. Chem. Soc., 32, 13341-13347.
  • [11] Kitagawa, S. ve Matsuda, R. (2007). Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev., 251, 2490-2509.
  • [12] DeBurgomaster, P., Liu, H., O’Connor, C.J. ve Zubieta, J. (2010). Metal-organophosphonates: hydrothermal synthesis and structures of [Cu(O3PC10H6CO2H)] and [Cu(bpy) (HO3PC10H6CO2)] (H2O3PC10H6CO2H = 2,6-carboxynaphthalene phosphonic acid). Inorg. Chim. Acta, 363, 1654-1658.
  • [13] Greenfield, T.J., Takemoto, T., Cano, J., Lloret, F., Julve, M., Zubieta, J. ve Doyle, R.P. (2019). A methylenediphosphonate bridged copper(II) tetramer: Synthesis, structural, thermal, and magnetic characterization of [Cu4(H2O)2(phen)4(μ-P2O6CH2)2].21H2O. Polyhedron, 169, 162-168.
  • [14] Clearfield, A. (2012). Metal Phosphonate Chemistry from Synthesis to Applications, Demadis, K. (ed.), 1. baskı, Royal Society of Chemistry, London, United Kingdom, s. 675.
  • [15] Lopez, V., Minichelli, J., Case, D., Ruhlandt, K., Doyle, R.P. ve Zubieta, J. (2020). Hydrothermal synthesis and structure of a two-dimensional Fe(III)-organodiphosphonate compound,[Fe(O3PCH2C6H4CH2PO3H)(H2O)], and an Expansion of the Harris Notation. Inorg. Chim. Acta, 506, 119518.
  • [16] Güllü, E.B. ve Avcı, G. (2013). Timokinon: Nigella Sativa’nın Biyoaktif Komponenti, Kocatepe Vet. J., 6(1), 51-61.
  • [17] Yanaroğlu, S. (2011). Çörekotunun (Nigella Sativa L.) Biyolojik Etkileri Üzerine Bir Araştırma, Yüksek Lisans Tezi, Yakın Doğu Üniversitesi, Lefkoşa, s. 7-10.
  • [18] Al-Gaby, A. M. (1998). Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein. Nahrung, 42, 290-4.
  • [19] Mohamed Abdel-Fattah, A-F. M., Matsumoto, K. ve Watanabe, H. (2000). Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur. J. Pharmacol., 400, 89-97.
  • [20] Jaswal, A., Sinha, N., Bhadauria, M., Shrivastava, S. ve Shukla, S. (2013). Therapeutic potential of thymoqinone against anti-tuberculosis drugs induced liver damage. Environ. Toxicol. Pharmacol., 36, 779-786.
  • [21] Aljabre, S.H.M., Randhawa, M.A., Akhtar, N., Alakloby, O. M., Alqurashi, A.M. ve Aldossary, A. (2005). Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. J. Ethnopharmacol., 101, 116-119.
  • [22] Jrah-Harzallah, H., Ben-Hadj-Khalifa, S., Almawi, W. Y., Maaloul, A., Houas, Z. ve Mahjoub, T. (2013). Effect of thymoquinone on 1,2-dimethyl-hydrazine-induced oxidative stress during initiation and promotion of colon carcinogenesis. Eur. J. Cancer, 49, 1127-1135.
  • [23] Lei, X., Lv, X., Liu, M., Yang, Z., Ji, M., Guo, X. ve Dong, W. (2012). Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun., 417, 864-868.
  • [24] Ravindran, J., Nair, H. B., Sung, B., Prasad, S., Tekmal, R. R. ve Aggarwal, B. B. (2010). Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochem. Pharmacol., 79, 1640-1647.
  • [25] Woo, C.C., Kumar, A.P., Sethi, G. ve Tan, K.H.B. (2012). Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 83, 443-451.
  • [26] Sheldrick, G.M. (2008). A short history of SHELX. Acta Cryst., A64, 112-122.
  • [27] Sheldrick, G. M. (2015) Crystal structure refinement with SHELXL. Acta Cryst., C71, 3-8. [28] APEX2, (2013). Bruker AXS Inc. Madison Wisconsin USA.
  • [29] Arnold, D.I., Ouyang, X. ve Clearfield, A. (2002). Synthesis and Crystal Structures of Copper(II) Diphosphonatoalkanes:  C4 and C5. Chem. Mater., 5, 2020-2027.
  • [30] Thorat, P.B., Goswami, S.V., Magar, R.L., Patil, B.R. ve Bhusare, S.R. (2013). An Efficient Organocatalysis: A One-Pot Highly Enantioselective Synthesis of α-Aminophosphonates. Eur. J. Org. Chem., 45(3), 5509-5516.
  • [31] Gomez-Alcantra, M.M., Cabeza, A., Martinez-Lara, M., Aranda, M.A.G., Suau, R., Bhuvanesh, N. ve Clearfield, A. (2004). Synthesis and Characterization of a New Bisphosphonic Acid and Several Metal Hybrids Derivatives. Inorg. Chem., 43, 5283-5293.
  • [32] Ortiz-Avila, C.Y., Bhardwaj, C. ve Clearfield, A. (1994). Zirconium Polyimine Phosphonates, a New Class of Remarkable Complexing Agents. Inorg. Chem., 33, 2499-2500.
  • [33] Demirci, F., Berber, H. ve İşcan, G. (2008). Biyokatalizörler yardımıyla p-simen’den timokinon ve benzeri biyoaktif metabolitlerin üretimi (TÜBİTAK, Proje No: 106T117).
  • [34] Neves, M.B.C., Tome, J.P.C., Hou, Z., Dehaen, W., Hoogenboom, R., Neves, M.G.P.M.S. ve Simoes, M.M.Q. (2018). Oxidation of Monoterpenes Catalysed by aWater-Soluble MnIII PEG-Porphyrin in aBiphasic Medium. ChemCatChem., 10(13), 2804-2809.
  • [35] Martins, R.L., Neves, M.G.P.M.S., Silvestre, A.J.D. ve Silva, A.M.S. (1999). Oxidation of aromatic monoterpenes with hydrogen peroxide catalysed by Mn(III)/porphyrin complexes. J. Mol. Catal. A Chem., 137, 41-47.
  • [36] Skrobot, F.C., Valente, A.A., Neves, G., Rosa, I., Rocha, J. ve Cavaleiro, J.A.S. (2003). Monoterpenes oxidation in the presence of Y zeolite-entrapped manganese(III) tetra(4-N-benzylpyridyl)porphyrin. J. Mol. Catal. A Chem., 201, 211-222.
  • [37] Santos, I.C.M.S., Simoes, M.M.Q., Pereira, M.M.M.S., Martins, R.R.L., Neves, M.G.P.M. S., Cavaleiro, J.A.S. ve Cavaleiro, A.M.V. (2003). Oxidation of monoterpenes with hydrogen peroxide catalysed by Keggin-type tungstoborates. J. Mol. Catal. A Chem., 195, 253-262. [38] Günay, T., Çimen, Y., Karabacak, R.B. ve Türk, H. (2016). Oxidation of Thymol and Carvacrol to Thymoquinone with KHSO5 Catalyzed by Iron Phthalocyanine Tetrasulfonate in a Methanol-Water Mixture. Catal. Letters, 146, 2306-2312.
  • [39] Milos, M. (2001). A comparative study of biomimetic oxidation of oregano essential oil by H2O2 or KHSO5 catalyzed by Fe (III) meso-tetraphenylporphyrin or Fe (III) phthalocyianine. Appl. Catal. A Gen., 2016(1), 157-161.
  • [40] Ay, B., Yag, G., Yildiz, E. ve Rheingold, A.L. (2015). Hydrothermal synthesis and characterization of {[Ni2(NA)4(µ-H2O)].2H2O}n (HNA = nicotinic acid) and its heterogeneous catalytic Effect. Polyhedron, 88, 164-169.
  • [41] Ay, B., Yildiz, E., Jones, S. ve Zubieta, J. (2012). Hydrothermal synthesis of a novel µ-dihydroxo-bis(2,6-pyridinedicarboxylatoaqu-achromium(III)) complex and investigation of its catalytic activity. Inorg. Chim. Acta, 387, 15-19.
  • [42] Ay, B., Takano, R., Ishida, T. ve Yildiz, E. (2022). Tricopper(II)bis(2-((hydrogen phosphonato)methyl)benzylphosphonate) as a layered oxo-bridged copper(II) coordination polymer: Synthesis, structure, magnetic property, and catalytic activity. Polyhedron, 225, 116038.
  • [43] Ay, B., Yildiz, E. ve Kani, İ. (2017). Two novel isostructural and heteroleptic Nd(III) and Dy(III)-organic frameworks constructed by 2,5-pyridinedicarboxylic acid and in situ generated 2-pyridinecarboxylic acid: Hydrothermal synthesis, characterization, photoluminescence properties and heterogeneous catalytic activities. Polyhedron, 130, 165-175.
  • [44] Ay, B., Yildiz, E., Felts, A.C. ve Abboud, K.A. (2016). Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework. J. Solid State Chem., 244, 61-68.
  • [45] Ay, B., Yildiz, E., Protasiewicz, J.D. ve Rheingold, A.L. (2013). Hydrothermal synthesis, crystal structure and heterogeneous catalytic activity of a novel inorganic-organic hybrid complex, possessing infinite La-O-La linkages. Inorg. Chim. Acta, 399, 208-213.
  • [46] Dare, N.A., Brammer, L., Bourne, S.A. ve Egan, T.J. (2018). Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal-Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg. Chem., 57, 1171-1183. Kani, İ. (2023). Oxidation of thymol catalysed by a water-soluble Cu (II)-adipate-diphenylamine complex in a biphasic medium. Polyhedron, 230, 116237.
There are 44 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Burak Ay 0000-0001-7055-8139

Project Number -
Early Pub Date December 29, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 35 Issue: 4

Cite

APA Ay, B. (2023). Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 35(4), 428-438. https://doi.org/10.7240/jeps.1284405
AMA Ay B. Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi. JEPS. December 2023;35(4):428-438. doi:10.7240/jeps.1284405
Chicago Ay, Burak. “Üç Boyutlu Ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik Ve Termal Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 35, no. 4 (December 2023): 428-38. https://doi.org/10.7240/jeps.1284405.
EndNote Ay B (December 1, 2023) Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences 35 4 428–438.
IEEE B. Ay, “Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi”, JEPS, vol. 35, no. 4, pp. 428–438, 2023, doi: 10.7240/jeps.1284405.
ISNAD Ay, Burak. “Üç Boyutlu Ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik Ve Termal Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 35/4 (December 2023), 428-438. https://doi.org/10.7240/jeps.1284405.
JAMA Ay B. Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi. JEPS. 2023;35:428–438.
MLA Ay, Burak. “Üç Boyutlu Ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik Ve Termal Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 4, 2023, pp. 428-3, doi:10.7240/jeps.1284405.
Vancouver Ay B. Üç Boyutlu ve Katmanlı Bakır Organodifosfonat Koordinasyon Polimerinin Sentezi, Karakterizasyonu, Katalitik ve Termal Özelliklerinin İncelenmesi. JEPS. 2023;35(4):428-3.