Research Article
BibTex RIS Cite

A Complete LTspice Simulation Model for SAW Devices

Year 2024, Volume: 36 Issue: 1, 59 - 69, 25.03.2024
https://doi.org/10.7240/jeps.1304351

Abstract

A complete circuit model of Surface Acoustic Wave (SAW) devices with straight interdigital transducers is presented. This equivalent circuit can be implemented in LTspice and contains variable design characteristics that can be easily changed to see their effect on the electrical response of the final SAW device design. Later a two port Surface Acoustic Wave device with 13-finger-IDT electrodes is fabricated and its electrical characterization is examined using a vector network analyzer. The test results are then compared with the equivalent circuits’ simulation output results for the verification. The results show an acceptable agreement between the experimental and simulation results for a wide frequency range. This paper offers an easy method to create an equivalent LTSpice model to determine the electrical response of a SAW device before fabrication. The model can also be used to simulate the behaviour of the circuits containing SAW devices using LTSPICE tool.

References

  • [1] Rayleigh, L. (1885). On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, s1-17(1), 4–11. https://doi.org/10.1112/plms/s1-17.1.4
  • [2] Stoneley, R. (1924). Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society of London, 106(738), 416–428. https://doi.org/10.1098/rspa.1924.0079
  • [3] Ingebrigsten K.A.,(1967). Elastic surface waves in piezoelectrics and their coupling to carriers in an adjoining semiconductor. Elab Rept TE-94 Norwegian Institute of technology, Trondheim, Norway., 1(1).
  • [4] Strauss, W. A. (1965). Magnetoelastic waves in yttrium iron garnet. Journal of Applied Physics, 36(1), 118–123. https://doi.org/10.1063/1.1713856
  • [5] Fall, D., Duquennoy, M., Ouaftouh, M., Piwakowski, B., & Jenot, F. (2018). Effective and rapid technique for temporal response modeling of surface acoustic wave interdigital transducers. Ultrasonics, 82, 371–378. https://doi.org/10.1016/j.ultras.2017.09.018
  • [6] Kamal, A., Ali, M. a. A., Faris, M., Monzer, O., & Mostafa, H. (2020). Design and analysis of Multi-Port SAW MEMS resonators. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST),1-4. https://doi.org/10.1109/mocast49295.2020.9200258
  • [7] Pennuri, D., et al. (2003). A Circuit Simulation Component Model For RF Surface Acoustic Wave Devices. In S3 2003 Symposium (Motorola).
  • [8] Hagmann, M. J. (2019). Analysis and equivalent circuit for accurate wideband calculations of the impedance for a piezoelectric transducer having loss. AIP Advances, 9(8), 085313.
  • [9] Yazdani, M. A., & Sısman, A. (2020). A novel numerical model to simulate acoustofluidic particle manipulation. Phys. Scr., 95, 095002.
  • [10] Elsherbini, et al. (2016). Finite Element Method Simulation for SAW Resonator-Based Sensors. International Electrical Engineering Journal (IEEJ), 7(2), 2167-2172.
  • [11] Mason, W. P. (1942). Electromechanical Transducers and Wave Filters. New York.
  • [12] Smith, W. R., Gerard, H. M., Collins, J. H., Reeder, T. M., & Shaw, H. J. (1969). Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model. IEEE Transactions on Microwave Theory and Techniques, MTT-17(11).
  • [13] Berlincourt, D. A., Curran, D. R., & Jaffe, H. (1964). In W. P. Mason (Ed.), Physical Acoustics (Vol. 1A, pp. 233-242). New York: Academic Press.
  • [14] Hoang, T. (2011). SAW Parameters Analysis and equivalent circuit of SAW device. In InTech eBooks. https://doi.org/10.5772/19910
  • [15] Mishra, D., Hussain, D. M. A., Dhankar, M., Singh, A., & Dabas, S. (2016). Interdigital Transducer Modeling through Mason Equivalent Circuit Model Design and Simulation.
  • [16] Ryder, J. D. (1964). Networks, Lines, and Fields. Asia Publishing House, pp. 80-88.
  • [17] Parker, T. E., Montress, G. K. (1988, May). Precision Surface Acoustic Wave (SAW) Oscillator.
  • [18] Huang, H., Paramo, D. (2011, December). Broadband Electrical Impedance Matching for Piezoelectric Ultrasound Transducer.
  • [19] Fall, D., Duquennoy, M., Ouaftouh, M., Piwakowski, B., & Jenot, F. (2015). Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing. Physics Procedia, 70, 927–931. https://doi.org/10.1016/j.phpro.2015.08.192
  • [20] Hartmann, C. S., Bell, D. T., & Rosenfeld, R. C. (1973). Impulse Model Design of Acoustic Surface-Wave Filters. IEEE Transactions on Microwave Theory and Techniques, 21(4), 162-175. doi:10.1109/TMTT.1973.112
  • [21] Lakin, K. M., Joseph, T., & Penunuri, D. (1974, November). Planar Surface Acoustic Wave Resonator. Ultrasonic Symposium Proceedings, IEEE, 1, 263-267.
  • [22] Wilson, W. C., & Atkinson, G. M. (2006, October). Mixed modeling of a SAW delay line using VHDL.
  • [23] Fu, Q., Fischer, W., & Stab, H. (2003, May). Simulate Surface Acoustic Wave Devices Using VHDL-ALM.
  • [24] Krairojananan, T., & Redwood, M. (1971, February). Equivalent electrical circuits of interdigital transducers for piezoelectric generation and detection of Rayleigh waves. Proceedings of the Institution of Electrical Engineers, 118(2), 305-310.
  • [25] Engen, H. (1969, April). Excitation of Elastic Surface Wave by Spatial Harmonics of Interdigital Transducers. Norwegian Institute of Technology, Trondheim, Norway.
  • [26] Weis, R. S., & Gaylord, T. K. (1985, March). Lithium Niobate: Summary of Physical Properties and Crystal Structure. School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA.
  • [27] Hage-Ali, C. S., et al. (2020). FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500°C. Sensors, 20(15), 4166. doi:10.3390/s20154166.
  • [28] Hickemell, F. S., et al. (1995). The surface acoustic wave propagation characteristics of 64° Y-X LiNbO₃ and 36° Y-X LiTaO₃ substrates with thin-film SiO₂. In 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Vol. 1, pp. 345-348).

SAW Cihazları için Bir LTspice Benzetim Modeli

Year 2024, Volume: 36 Issue: 1, 59 - 69, 25.03.2024
https://doi.org/10.7240/jeps.1304351

Abstract

Bu çalışma ile, düz interdijital dönüştürücülere sahip Yüzey Akustik Dalgası (SAW) cihazlarının eksiksiz bir devre modeli sunulmaktadır. Bu eşdeğer devre LTspice kullanılarak uygulanabilir ve nihai SAW cihazı tasarımının elektriksel tepkisi ve devre üzerindeki etkilerini görmek için kullanılabilr. Önerilen model, SAW cihazı tasarım özelliklerinin kolaylıkla değiştirilmesine olanak sağlar. ÇAlışmada 13-parmak-IDT elektrodu içeren, iki portlu bir Yüzey Akustik Dalgası cihazı imal edilmiş ve bir vektör ağ analizörü kullanılarak elektriksel karakterizasyonu incelenmiştir. Test sonuçları daha sonra doğrulama için eşdeğer devrelerin simülasyon çıktı sonuçlarıyla karşılaştırılmıştır. Sonuçlar, geniş bir frekans aralığı için deneysel ve simülasyon sonuçları arasında kabul edilebilir bir uyum göstermektedir. Bu makale, üretimden önce bir SAW cihazının elektriksel tepkisini belirlemek için eşdeğer bir LTSpice modeli oluşturmak için kolay bir yöntem sunmaktadır. Ayrıca, modelin LTSPICE aracı kullanılarak SAW cihazları içeren devrelerin davranışını simüle etmek için de kullanım potansiyeli ortaya konulmuştur.

References

  • [1] Rayleigh, L. (1885). On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, s1-17(1), 4–11. https://doi.org/10.1112/plms/s1-17.1.4
  • [2] Stoneley, R. (1924). Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society of London, 106(738), 416–428. https://doi.org/10.1098/rspa.1924.0079
  • [3] Ingebrigsten K.A.,(1967). Elastic surface waves in piezoelectrics and their coupling to carriers in an adjoining semiconductor. Elab Rept TE-94 Norwegian Institute of technology, Trondheim, Norway., 1(1).
  • [4] Strauss, W. A. (1965). Magnetoelastic waves in yttrium iron garnet. Journal of Applied Physics, 36(1), 118–123. https://doi.org/10.1063/1.1713856
  • [5] Fall, D., Duquennoy, M., Ouaftouh, M., Piwakowski, B., & Jenot, F. (2018). Effective and rapid technique for temporal response modeling of surface acoustic wave interdigital transducers. Ultrasonics, 82, 371–378. https://doi.org/10.1016/j.ultras.2017.09.018
  • [6] Kamal, A., Ali, M. a. A., Faris, M., Monzer, O., & Mostafa, H. (2020). Design and analysis of Multi-Port SAW MEMS resonators. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST),1-4. https://doi.org/10.1109/mocast49295.2020.9200258
  • [7] Pennuri, D., et al. (2003). A Circuit Simulation Component Model For RF Surface Acoustic Wave Devices. In S3 2003 Symposium (Motorola).
  • [8] Hagmann, M. J. (2019). Analysis and equivalent circuit for accurate wideband calculations of the impedance for a piezoelectric transducer having loss. AIP Advances, 9(8), 085313.
  • [9] Yazdani, M. A., & Sısman, A. (2020). A novel numerical model to simulate acoustofluidic particle manipulation. Phys. Scr., 95, 095002.
  • [10] Elsherbini, et al. (2016). Finite Element Method Simulation for SAW Resonator-Based Sensors. International Electrical Engineering Journal (IEEJ), 7(2), 2167-2172.
  • [11] Mason, W. P. (1942). Electromechanical Transducers and Wave Filters. New York.
  • [12] Smith, W. R., Gerard, H. M., Collins, J. H., Reeder, T. M., & Shaw, H. J. (1969). Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model. IEEE Transactions on Microwave Theory and Techniques, MTT-17(11).
  • [13] Berlincourt, D. A., Curran, D. R., & Jaffe, H. (1964). In W. P. Mason (Ed.), Physical Acoustics (Vol. 1A, pp. 233-242). New York: Academic Press.
  • [14] Hoang, T. (2011). SAW Parameters Analysis and equivalent circuit of SAW device. In InTech eBooks. https://doi.org/10.5772/19910
  • [15] Mishra, D., Hussain, D. M. A., Dhankar, M., Singh, A., & Dabas, S. (2016). Interdigital Transducer Modeling through Mason Equivalent Circuit Model Design and Simulation.
  • [16] Ryder, J. D. (1964). Networks, Lines, and Fields. Asia Publishing House, pp. 80-88.
  • [17] Parker, T. E., Montress, G. K. (1988, May). Precision Surface Acoustic Wave (SAW) Oscillator.
  • [18] Huang, H., Paramo, D. (2011, December). Broadband Electrical Impedance Matching for Piezoelectric Ultrasound Transducer.
  • [19] Fall, D., Duquennoy, M., Ouaftouh, M., Piwakowski, B., & Jenot, F. (2015). Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing. Physics Procedia, 70, 927–931. https://doi.org/10.1016/j.phpro.2015.08.192
  • [20] Hartmann, C. S., Bell, D. T., & Rosenfeld, R. C. (1973). Impulse Model Design of Acoustic Surface-Wave Filters. IEEE Transactions on Microwave Theory and Techniques, 21(4), 162-175. doi:10.1109/TMTT.1973.112
  • [21] Lakin, K. M., Joseph, T., & Penunuri, D. (1974, November). Planar Surface Acoustic Wave Resonator. Ultrasonic Symposium Proceedings, IEEE, 1, 263-267.
  • [22] Wilson, W. C., & Atkinson, G. M. (2006, October). Mixed modeling of a SAW delay line using VHDL.
  • [23] Fu, Q., Fischer, W., & Stab, H. (2003, May). Simulate Surface Acoustic Wave Devices Using VHDL-ALM.
  • [24] Krairojananan, T., & Redwood, M. (1971, February). Equivalent electrical circuits of interdigital transducers for piezoelectric generation and detection of Rayleigh waves. Proceedings of the Institution of Electrical Engineers, 118(2), 305-310.
  • [25] Engen, H. (1969, April). Excitation of Elastic Surface Wave by Spatial Harmonics of Interdigital Transducers. Norwegian Institute of Technology, Trondheim, Norway.
  • [26] Weis, R. S., & Gaylord, T. K. (1985, March). Lithium Niobate: Summary of Physical Properties and Crystal Structure. School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA.
  • [27] Hage-Ali, C. S., et al. (2020). FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500°C. Sensors, 20(15), 4166. doi:10.3390/s20154166.
  • [28] Hickemell, F. S., et al. (1995). The surface acoustic wave propagation characteristics of 64° Y-X LiNbO₃ and 36° Y-X LiTaO₃ substrates with thin-film SiO₂. In 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Vol. 1, pp. 345-348).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Alper Şişman 0000-0002-2239-9927

Early Pub Date March 18, 2024
Publication Date March 25, 2024
Published in Issue Year 2024 Volume: 36 Issue: 1

Cite

APA Şişman, A. (2024). A Complete LTspice Simulation Model for SAW Devices. International Journal of Advances in Engineering and Pure Sciences, 36(1), 59-69. https://doi.org/10.7240/jeps.1304351
AMA Şişman A. A Complete LTspice Simulation Model for SAW Devices. JEPS. March 2024;36(1):59-69. doi:10.7240/jeps.1304351
Chicago Şişman, Alper. “A Complete LTspice Simulation Model for SAW Devices”. International Journal of Advances in Engineering and Pure Sciences 36, no. 1 (March 2024): 59-69. https://doi.org/10.7240/jeps.1304351.
EndNote Şişman A (March 1, 2024) A Complete LTspice Simulation Model for SAW Devices. International Journal of Advances in Engineering and Pure Sciences 36 1 59–69.
IEEE A. Şişman, “A Complete LTspice Simulation Model for SAW Devices”, JEPS, vol. 36, no. 1, pp. 59–69, 2024, doi: 10.7240/jeps.1304351.
ISNAD Şişman, Alper. “A Complete LTspice Simulation Model for SAW Devices”. International Journal of Advances in Engineering and Pure Sciences 36/1 (March 2024), 59-69. https://doi.org/10.7240/jeps.1304351.
JAMA Şişman A. A Complete LTspice Simulation Model for SAW Devices. JEPS. 2024;36:59–69.
MLA Şişman, Alper. “A Complete LTspice Simulation Model for SAW Devices”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 1, 2024, pp. 59-69, doi:10.7240/jeps.1304351.
Vancouver Şişman A. A Complete LTspice Simulation Model for SAW Devices. JEPS. 2024;36(1):59-6.