Research Article
BibTex RIS Cite

Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces

Year 2024, Volume: 36 Issue: 4, 320 - 325, 22.12.2024
https://doi.org/10.7240/jeps.1529681

Abstract

Thermal emitters working in the mid-infrared (MIR) region are indispensable in many applications, such as sensing, thermophotovoltaics, and imaging. Resonance wavelength tunability, high efficiency, cost-effectiveness, and high quality (Q) factor are desirable properties of thermal emitters. Selective thermal emitters have been realized using metallic metasurfaces, which, due to ohmic losses, do not exhibit very sharp emission peaks. Recently, metasurfaces possessing very high Q factors made of dielectric materials with asymmetric features that exploit quasi-bound states in the continuum are introduced. The dielectric metasurface-based thermal emitters shown in the literature have a single type of asymmetry, such as a difference in the length of resonators or angular separation of resonators. However, resonance wavelength and thermal emissivity could be tuned by having multiple types of asymmetries. This study proposes a structure consisting of a zigzag array of silicon rectangular bars with different lengths as resonators. Gold is the choice of the substrate with a dielectric layer made of Al2O3 sandwiched between gold substrate and silicon bars. Based on the conducted simulations, an emissivity value exceeding 0.99 with a Q factor of 116 at the resonance wavelength of 5.818 µm was obtained when the silicon bars were separated by π/25 from the origin in opposite directions with a length asymmetry factor of 0.3. Additionally, independent tuning of emissivity intensity and resonance wavelength is displayed. Such findings can lead to bespoke thermal emitter designs.

Supporting Institution

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkiye) with grant number 123E460.

Project Number

123E460

Thanks

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkiye) with grant number 123E460.

References

  • Li, X., Maqbool, E., & Han, Z. (2023). Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum. Optics Express, 31(12), 20338–20344.
  • Sun, K., Sun, M., Ma, Y., Shi, Y., & Han, Z. (2023). Ultra-narrow bandwidth mid-infrared thermal emitters achieved with all-dielectric metasurfaces. International Communications in Heat and Mass Transfer, 143, 106728.
  • Liu, X. J., Zhao, C. Y., Wang, B. X., & Xu, J. M. (2023). Tailorable bandgap-dependent selective emitters for thermophotovoltaic systems. International Journal of Heat and Mass Transfer, 200, 123504.
  • Lenert, A., Bierman, D. M., Nam, Y., Chan, W. R., Celanović, I., Soljačić, M., & Wang, E. N. (2014). A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 9(2), 126–130.
  • De Zoysa, M., Asano, T., Mochizuki, K., Oskooi, A., Inoue, T., & Noda, S. (2012). Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photonics, 6(8), 535–539.
  • Costantini, D., Lefebvre, A., Coutrot, A.-L., Moldovan-Doyen, I., Hugonin, J.-P., Boutami, S., Marquier, F., Benisty, H., & Greffet, J.-J. (2015). Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission. Physical Review Applied, 4(1), 014023.
  • Yang, S., He, M., Hong, C., Nordlander, J., Maria, J.-P., Caldwell, J. D., & Ndukaife, J. C. (2024). Single-peak and narrow-band mid-infrared thermal emitters driven by mirror-coupled plasmonic quasi-BIC metasurfaces. Optica, 11(3), 305–314.
  • Liu, X., Tyler, T., Starr, T., Starr, A. F., Jokerst, N. M., & Padilla, W. J. (2011). Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 107(4), 045901.
  • Lochbaum, A., Fedoryshyn, Y., Dorodnyy, A., Koch, U., Hafner, C., & Leuthold, J. (2017). On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics, 4(6), 1371–1380.
  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S., & Luk’yanchuk, B. (2016). Optically resonant dielectric nanostructures. Science, 354(6314), aag2472.
  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. (2016). Bound states in the continuum. Nature Reviews Materials, 1(9), 1–13.
  • Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A., & Kivshar, Y. (2018). Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Physical Review Letters, 121(19), 193903.
  • Li, S., Zhou, C., Liu, T., & Xiao, S. (2019). Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 100(6), 063803.
  • Zografopoulos, D. C., & Tsilipakos, O. (2023). Recent advances in strongly resonant and gradient all-dielectric metasurfaces. Materials Advances, 4(1), 11–34.
  • Li, S., Zhou, C., Liu, T., & Xiao, S. (2019). Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 100(6), 063803.
  • Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D.-Y., Neshev, D. N., Kivshar, Y. S., & Altug, H. (2018). Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360(6393), 1105–1109.
  • Watanabe, K., Devi, H. R., Iwanaga, M., & Nagao, T. (2024). Vibrational Coupling to Quasi-Bound States in the Continuum under Tailored Coupling Conditions. Advanced Optical Materials, 12(6), 2301912.
  • Jahani, Y., Arvelo, E. R., Yesilkoy, F., Koshelev, K., Cianciaruso, C., De Palma, M., Kivshar, Y., & Altug, H. (2021). Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nature Communications, 12(1), 3246.
  • Liu, C., Bai, Y., Zhou, J., Chen, J., & Qiao, L. (2021). Refractive index sensing by asymmetric dielectric gratings with both bound states in the continuum and guided mode resonances. Optics Express, 29(26), 42978–42988.
  • Vincenti, M. A., Carletti, L., Ceglia, D. de, Rocco, D., Weigand, H., Saerens, G., Falcone, V., Grange, R., Sedeh, H. B., Li, W., Litchinitser, N. M., & Scalora, M. (2024). From high- to low-contrast: The role of asymmetries in dielectric gratings supporting bound states in the continuum. Optics Express, 32(18), 31956–31964.
  • Algorri, J. F., Dmitriev, V., Hernández-Figueroa, H. E., Rodríguez-Cobo, L., Dell’Olio, F., Cusano, A., López-Higuera, J. M., & Zografopoulos, D. C. (2024). Polarization-independent hollow nanocuboid metasurfaces with robust quasi-bound states in the continuum. Optical Materials, 147, 114631.
  • Huang, Z., Wang, J., Jia, W., Zhang, S., & Zhou, C. (2024). Controllable perfect chiral optical response in planar metasurfaces empowered by quasi-bound states in the continuum. Optics Express, 32(19), 33029–33041.
  • Olmon, R. L., Slovick, B., Johnson, T. W., Shelton, D., Oh, S.-H., Boreman, G. D., & Raschke, M. B. (2012). Optical dielectric function of gold. Physical Review B, 86(23), 235147.
  • Boidin, R., Halenkovič, T., Nazabal, V., Beneš, L., & Němec, P. (2016). Pulsed laser deposited alumina thin films. Ceramics International, 42(1, Part B), 1177–1182.
  • Edwards, D. F., & Ochoa, E. (1980). Infrared refractive index of silicon. Applied Optics, 19(24), 4130–4131.
  • Ren, D., Dong, C., Addamane, S. J., & Burghoff, D. (2022). High-quality microresonators in the longwave infrared based on native germanium. Nature Communications, 13(1), 5727.
  • Krishnamoorthy, H. N. S., Adamo, G., Yin, J., Savinov, V., Zheludev, N. I., & Soci, C. (2020). Infrared dielectric metamaterials from high refractive index chalcogenides. Nature Communications, 11(1), 1692.
  • Kim, C., & Lee, B. (2023). TORCWA: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design. Computer Physics Communications, 282, 108552.
  • Li, J., Wang, J.-B., Sun, Z., Shi, L.-H., Ma, Y., Zhang, Q., Fu, S.-C., Liu, Y.-C., & Ran, Y.-Z. (2020). Efficient Rigorous Coupled-Wave Analysis Without Solving Eigenvalues for Analyzing One-Dimensional Ultrathin Periodic Structures. IEEE Access, 8, 198131–198138. IEEE Access.
  • Sun, K., Cai, Y., & Han, Z. (2021). A novel mid-infrared thermal emitter with ultra-narrow bandwidth and large spectral tunability based on the bound state in the continuum. Journal of Physics D: Applied Physics, 55(2), 025104.

Çift Asimetrik Dielektrik Meta Yüzeylere Dayalı Dar Bant Genişliği ve Ayarlanabilir Orta Kızılötesi Termal Yayıcı

Year 2024, Volume: 36 Issue: 4, 320 - 325, 22.12.2024
https://doi.org/10.7240/jeps.1529681

Abstract

Orta kızılötesi (MIR) bölgesinde çalışan termal yayıcılar, algılama, termofotovoltaik ve görüntüleme gibi birçok uygulamada vazgeçilmezdir. Rezonans dalga boyu ayarlanabilirliği, yüksek verimlilik, maliyet etkinliği ve yüksek kalite (Q) faktörü termal yayıcıların arzu edilen özellikleridir. Seçici termal yayıcılar, omik kayıplar nedeniyle çok keskin yayınım tepeleri sergilemeyen metalik meta yüzeyler kullanılarak gerçekleştirilmiştir. Son yıllarda, süreklilikteki yarı bağlı durumlardan yararlanan asimetrik özelliklere sahip dielektrik malzemelerden yapılmış meta yüzeyler çok yüksek Q faktörleri ile tanıtılmıştır. Şimdiye kadar literatürde gösterilen dielektrik meta yüzey tabanlı termal yayıcılar, rezonatörlerin uzunluk farkı veya rezonatörlerin açısal ayrımı gibi tek bir asimetri türüne sahiptir. Bununla birlikte, birden fazla asimetri türüne sahip olarak, rezonans dalga boyu ve termal yayınım bağımsız olarak ayarlanabilir. Bu çalışmada, rezonatör olarak farklı uzunluklarda silikon dikdörtgen çubukların zikzak dizisinden oluşan bir yapı önerilmektedir. Alt tabaka olarak altın seçilmiştir ve silikon çubuklar ile altın arasında yer alan Al2O3'ten yapılmış bir dielektrik ara tabaka bulunmaktadır. Silikon çubuklar 0,3 uzunluk asimetri faktörü ile orijinden π/25 oranında ayrıldığında 5,818 µm rezonans dalga boyunda 116 Q faktörü ile 0,99'u aşan bir emisivite değeri elde edilmiştir. Ek olarak, emisivite yoğunluğunun ve rezonans dalga boyunun bağımsız olarak ayarlanması gösterilmiştir. Bu tür bulgular ihtiyaca özel termal yayıcı tasarımlarına yol açabilecektir.

Project Number

123E460

References

  • Li, X., Maqbool, E., & Han, Z. (2023). Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum. Optics Express, 31(12), 20338–20344.
  • Sun, K., Sun, M., Ma, Y., Shi, Y., & Han, Z. (2023). Ultra-narrow bandwidth mid-infrared thermal emitters achieved with all-dielectric metasurfaces. International Communications in Heat and Mass Transfer, 143, 106728.
  • Liu, X. J., Zhao, C. Y., Wang, B. X., & Xu, J. M. (2023). Tailorable bandgap-dependent selective emitters for thermophotovoltaic systems. International Journal of Heat and Mass Transfer, 200, 123504.
  • Lenert, A., Bierman, D. M., Nam, Y., Chan, W. R., Celanović, I., Soljačić, M., & Wang, E. N. (2014). A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 9(2), 126–130.
  • De Zoysa, M., Asano, T., Mochizuki, K., Oskooi, A., Inoue, T., & Noda, S. (2012). Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photonics, 6(8), 535–539.
  • Costantini, D., Lefebvre, A., Coutrot, A.-L., Moldovan-Doyen, I., Hugonin, J.-P., Boutami, S., Marquier, F., Benisty, H., & Greffet, J.-J. (2015). Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission. Physical Review Applied, 4(1), 014023.
  • Yang, S., He, M., Hong, C., Nordlander, J., Maria, J.-P., Caldwell, J. D., & Ndukaife, J. C. (2024). Single-peak and narrow-band mid-infrared thermal emitters driven by mirror-coupled plasmonic quasi-BIC metasurfaces. Optica, 11(3), 305–314.
  • Liu, X., Tyler, T., Starr, T., Starr, A. F., Jokerst, N. M., & Padilla, W. J. (2011). Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 107(4), 045901.
  • Lochbaum, A., Fedoryshyn, Y., Dorodnyy, A., Koch, U., Hafner, C., & Leuthold, J. (2017). On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics, 4(6), 1371–1380.
  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S., & Luk’yanchuk, B. (2016). Optically resonant dielectric nanostructures. Science, 354(6314), aag2472.
  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. (2016). Bound states in the continuum. Nature Reviews Materials, 1(9), 1–13.
  • Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A., & Kivshar, Y. (2018). Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Physical Review Letters, 121(19), 193903.
  • Li, S., Zhou, C., Liu, T., & Xiao, S. (2019). Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 100(6), 063803.
  • Zografopoulos, D. C., & Tsilipakos, O. (2023). Recent advances in strongly resonant and gradient all-dielectric metasurfaces. Materials Advances, 4(1), 11–34.
  • Li, S., Zhou, C., Liu, T., & Xiao, S. (2019). Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 100(6), 063803.
  • Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D.-Y., Neshev, D. N., Kivshar, Y. S., & Altug, H. (2018). Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360(6393), 1105–1109.
  • Watanabe, K., Devi, H. R., Iwanaga, M., & Nagao, T. (2024). Vibrational Coupling to Quasi-Bound States in the Continuum under Tailored Coupling Conditions. Advanced Optical Materials, 12(6), 2301912.
  • Jahani, Y., Arvelo, E. R., Yesilkoy, F., Koshelev, K., Cianciaruso, C., De Palma, M., Kivshar, Y., & Altug, H. (2021). Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nature Communications, 12(1), 3246.
  • Liu, C., Bai, Y., Zhou, J., Chen, J., & Qiao, L. (2021). Refractive index sensing by asymmetric dielectric gratings with both bound states in the continuum and guided mode resonances. Optics Express, 29(26), 42978–42988.
  • Vincenti, M. A., Carletti, L., Ceglia, D. de, Rocco, D., Weigand, H., Saerens, G., Falcone, V., Grange, R., Sedeh, H. B., Li, W., Litchinitser, N. M., & Scalora, M. (2024). From high- to low-contrast: The role of asymmetries in dielectric gratings supporting bound states in the continuum. Optics Express, 32(18), 31956–31964.
  • Algorri, J. F., Dmitriev, V., Hernández-Figueroa, H. E., Rodríguez-Cobo, L., Dell’Olio, F., Cusano, A., López-Higuera, J. M., & Zografopoulos, D. C. (2024). Polarization-independent hollow nanocuboid metasurfaces with robust quasi-bound states in the continuum. Optical Materials, 147, 114631.
  • Huang, Z., Wang, J., Jia, W., Zhang, S., & Zhou, C. (2024). Controllable perfect chiral optical response in planar metasurfaces empowered by quasi-bound states in the continuum. Optics Express, 32(19), 33029–33041.
  • Olmon, R. L., Slovick, B., Johnson, T. W., Shelton, D., Oh, S.-H., Boreman, G. D., & Raschke, M. B. (2012). Optical dielectric function of gold. Physical Review B, 86(23), 235147.
  • Boidin, R., Halenkovič, T., Nazabal, V., Beneš, L., & Němec, P. (2016). Pulsed laser deposited alumina thin films. Ceramics International, 42(1, Part B), 1177–1182.
  • Edwards, D. F., & Ochoa, E. (1980). Infrared refractive index of silicon. Applied Optics, 19(24), 4130–4131.
  • Ren, D., Dong, C., Addamane, S. J., & Burghoff, D. (2022). High-quality microresonators in the longwave infrared based on native germanium. Nature Communications, 13(1), 5727.
  • Krishnamoorthy, H. N. S., Adamo, G., Yin, J., Savinov, V., Zheludev, N. I., & Soci, C. (2020). Infrared dielectric metamaterials from high refractive index chalcogenides. Nature Communications, 11(1), 1692.
  • Kim, C., & Lee, B. (2023). TORCWA: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design. Computer Physics Communications, 282, 108552.
  • Li, J., Wang, J.-B., Sun, Z., Shi, L.-H., Ma, Y., Zhang, Q., Fu, S.-C., Liu, Y.-C., & Ran, Y.-Z. (2020). Efficient Rigorous Coupled-Wave Analysis Without Solving Eigenvalues for Analyzing One-Dimensional Ultrathin Periodic Structures. IEEE Access, 8, 198131–198138. IEEE Access.
  • Sun, K., Cai, Y., & Han, Z. (2021). A novel mid-infrared thermal emitter with ultra-narrow bandwidth and large spectral tunability based on the bound state in the continuum. Journal of Physics D: Applied Physics, 55(2), 025104.
There are 30 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other), Material Design and Behaviors, Electronic, Optics and Magnetic Materials
Journal Section Research Articles
Authors

Osman Safa Çifçi 0000-0003-4431-0783

Project Number 123E460
Early Pub Date December 17, 2024
Publication Date December 22, 2024
Submission Date August 7, 2024
Acceptance Date October 6, 2024
Published in Issue Year 2024 Volume: 36 Issue: 4

Cite

APA Çifçi, O. S. (2024). Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces. International Journal of Advances in Engineering and Pure Sciences, 36(4), 320-325. https://doi.org/10.7240/jeps.1529681
AMA Çifçi OS. Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces. JEPS. December 2024;36(4):320-325. doi:10.7240/jeps.1529681
Chicago Çifçi, Osman Safa. “Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces”. International Journal of Advances in Engineering and Pure Sciences 36, no. 4 (December 2024): 320-25. https://doi.org/10.7240/jeps.1529681.
EndNote Çifçi OS (December 1, 2024) Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces. International Journal of Advances in Engineering and Pure Sciences 36 4 320–325.
IEEE O. S. Çifçi, “Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces”, JEPS, vol. 36, no. 4, pp. 320–325, 2024, doi: 10.7240/jeps.1529681.
ISNAD Çifçi, Osman Safa. “Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces”. International Journal of Advances in Engineering and Pure Sciences 36/4 (December 2024), 320-325. https://doi.org/10.7240/jeps.1529681.
JAMA Çifçi OS. Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces. JEPS. 2024;36:320–325.
MLA Çifçi, Osman Safa. “Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 4, 2024, pp. 320-5, doi:10.7240/jeps.1529681.
Vancouver Çifçi OS. Narrow Bandwidth and Tunable Mid-Infrared Thermal Emitter Design Based on Double Asymmetric Dielectric Metasurfaces. JEPS. 2024;36(4):320-5.