Research Article
BibTex RIS Cite

Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment

Year 2025, Volume: 37 Issue: 3, 356 - 368, 24.09.2025
https://doi.org/10.7240/jeps.1643538

Abstract

Metro systems constitute fundamental components of urban transportation and demand high reliability in terms of energy continuity. In disaster and emergency scenarios, particularly during earthquakes, an uninterrupted energy supply is critical for ensuring both operational continuity and passenger safety. This study investigates the capacity of emergency generators to meet energy demands during an earthquake on the M5 Üsküdar-Çekmeköy metro line. The process of maintaining energy continuity through generators was modeled and simulated within the MATLAB/Simulink environment. In the model, each load was independently activated, and generator output was dynamically adjusted in response to the power demand. Within the methodological framework, a risk-based load management strategy was developed, prioritizing critical loads. Te simulation assessed the load management processes of the generators and the system's capability to maintain energy continuity under emergency conditions. The modeling approach facilitated the evaluation of generator control mechanisms and operator intervention processes. Simulation outcomes allowed the assessment of the effectiveness of load management strategies and the continuity of energy supply provided by generators during emergencies. The study findings indicate that effective management of prioritized loads substantially enhances energy continuity, while dynamic control of generators based on demand improves overall system stability. Furthermore, the integration of artificial intelligence-based optimization algorithms and renewable energy sources was found to have the potential to increase the efficiency and sustainability of energy management in metro systems. Finally, recommendations were provided to enhance energy continuity in metro operations and infrastructure during disaster scenarios, with a detailed examination of the potential contributions of advanced technologies.

Project Number

YOK.

References

  • Hu, J., Wen, W., Zhai, C., & Pei, S. (2024). A comprehensive review of resilience of urban metro systems: A perspective from earthquake engineering. Tunnelling and Underground Space Technology, 90 (4), 99–126.
  • Demir, Fatma, and Mehmet, Saltan. (2017). "Deprem Etkisi Altında Demiryolu Üst Yapısı Davranışlarının İncelenmesi." Mühendislik Bilimleri ve Tasarım Dergisi 5(3), 615-620.
  • Omidvar, B., Malekshah, M. H., & Omidvar, H. (2014). Failure risk assessment of interdependent infrastructures against earthquake: A Petri net approach—case study: power and water distribution networks. Natural Hazards, 71(3), 1971–1993.
  • Huang, Wujing, et al. (2021). Resilience oriented planning of urban multi-energy systems with generalized energy storage sources. IEEE-Transactions on Power Systems 37(4), 2906-2918.
  • E. Karakaş And O. Armağan, (2024). Ensurıng Energy Contınuıty ın Dısaster And Emergency Sıtuatıons ın Metro Lınes, an Exemplary Emergency Investıgatıon Imascon 2024 Autumn Nov 29-30, 2024 Kocaeli/Türkiye, Internatıonal Marmara Scıence and Socıal Scıences Congress, Scıences Proeceedıngs Book vol.1, no.1, Kocaeli, Turkey,29(30), 322-330.
  • Kırlangıçoğlu, Cem. (2022). Metro İstasyonu Tasarımlarının Normal İşletme ve Acil Durum Tahliye Senaryoları Açısından 3 Boyutlu Simülasyon Teknolojisi ile Değerlendirilmesi. Demiryolu Mühendisliği 8(16), 51-65.
  • Singh, M. K., & Tripathi, R. K. (2020). Optimal operation and energy management of emergency power systems in microgrids. IEEE Transactions on Smart Grid, 102(6), 1970 –1993.
  • Shang, Jingfu, et al. (2009) The optimized allocation of mobile emergency generator based on the loads importance. 2009 Asia-Pacific Power and Energy Engineering Conference IEEE 435(6) 180 –198.
  • Ioannou, Ioanna, et al. (2022). Prioritization of hazards for risk and resilience management through elicitation of expert judgement. Natural hazards 112(3) 2773-2795.
  • Johansson, Jonas, Henrik Hassel, and Enrico Zio. (2013). Reliability and vulnerability analyses of critical infrastructures, Comparing two approaches in the context of power systems. Reliability Engineering & System Safety 120(9), 27-38.
  • Dey, P. K. (2001). Decision support system for inspection and maintenance: a risk-based approach. Reliability Engineering & System Safety, 72(3), 241–247.
  • Şen, Z., & Başar, E. (2019). Application of Fine–Kinney and AHP integrated approach for risk assessment of a metro construction project in Istanbul. Tunnelling and Underground Space Technology, 88(3) 172–180.
  • Cui, Hongjun, et al. (2024). Earthquake preparedness based on reliability and relief of the emergency supply network: Pre-storage and pre-matching. Transportation Safety and Environment 6.(4), 0 - 21.
  • Karakulak, Enes, and Yalçın Eyigün (2022). Kent İçi Raylı Sistemlerde Ve Ana Hat Demiryollarında Acil Durumda Yolcu Tahliyesi. İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi 4(2), 157-172.
  • Leoutsakos, George, et al. (2022). Metro Braking Energy for Station Electric Loads: The Business Case of a Smart Hybrid Storage System. Conference on Sustainable Urban Mobility. Cham: Springer Nature Switzerland, 21(3), 2110-2130.
  • Liao, Jinlin, et al. (2021). Energy-saving optimization strategy of multi-train metro timetable based on dual decision variables, A case study of Shanghai Metro line one. Journal of Rail Transport Planning & Management 17 (1) 02 - 34.
  • Hu, Xiaojuan, et al. (2025). Optimal energy management of a DC power traction system in an urban electric railway network with dogleg method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 47(1) 4663-4684.
  • Chen, Yu, Xinyue Yu, and Zhengyan Yang. (2025). A fuzzy decision support system for risk prioritization in fine kinney-based occupational risk analysis. Journal of Soft Computing and Decision Analytics 3(1) 1-17.
  • Wang, Guangpeng, et al. (2021). Flood risk assessment of metro system using improved trapezoidal fuzzy AHP: A case study of Guangzhou. Remote Sensing 13.(24) 51 - 54.
  • Qi, Qingjie, et al. (2022). Resilience assessment of an Urban Metro Complex Network, case study of the Zhengzhou Metro, Recovery, Utilization, and Environmental Effects 14.(18) 115 – 135.

Afet ve Acil Durumlarda Metro Hatlarının Enerji Sürekliliğini Sağlayan Sistemin Matlab Ortamında Uygulanması

Year 2025, Volume: 37 Issue: 3, 356 - 368, 24.09.2025
https://doi.org/10.7240/jeps.1643538

Abstract

Metro sistemleri şehir içi ulaşımın temel unsurlarından biri olup enerji sürekliliği açısından yüksek güvenilirlik gerektirmektedir. Afet ve acil durum senaryolarında, özellikle deprem sırasında kesintisiz enerji temini, hem operasyonel süreklilik hem de yolcu güvenliği açısından kritik bir gerekliliktir. Bu çalışmada M5 Üsküdar-Çekmeköy metro hattında deprem anında acil durum jeneratörlerinin enerji ihtiyacını nasıl karşıladığı incelenmiştir. Çalışmada jeneratörlerin enerji sürekliliğinin sağlanması süreci MATLAB/Simulink ortamında modellenerek simüle edilmiştir. Modelde her yük bağımsız olarak devreye alınmakta ve talep edilen güç miktarına göre jeneratörlerin üretimi dinamik olarak ayarlanmaktadır. Metodoloji kapsamında risk bazlı yük yönetimi stratejisi oluşturularak kritik yükler önceliklendirildi. Simülasyon çalışmasında jeneratörlerin yük yönetim süreçleri ve acil durumlarda sistemin enerji sürekliliğini nasıl sağladığı değerlendirildi. MATLAB/Simulink kullanılarak yapılacak modelleme, jeneratör kontrol mekanizmalarının ve operatör müdahale süreçlerinin test edilmesine olanak sağladı. Simülasyon sonuçları, yük yönetimi stratejilerinin etkinliğinin ve acil durumlarda jeneratörler tarafından sağlanan enerji sürekliliğinin değerlendirilmesine olanak sağladı. Çalışmanın sonunda afet durumlarında Metro operasyonlarında ve altyapılarında enerji sürekliliğinin artırılmasına yönelik öneriler sunulmuş, yapay zeka tabanlı optimizasyon algoritmaları ve yenilenebilir enerji entegrasyonu gibi ileri teknolojilerin potansiyel katkıları incelenmiştir.

Ethical Statement

Bu Makale çalışmasında kullanılan tüm veriler, bilgiler ve yöntemler etik kurallar çerçevesinde yürütülmüştür. Çalışma sırasında hiçbir etik dışı uygulamaya yer verilmemiştir. Tüm akademik ve bilimsel etik kurallara titizlikle uyulmuş, kaynak gösterme ve atıf yapma kuralları eksiksiz bir şekilde uygulanmıştır. Ayrıca bu çalışmada elde edilen veriler, orijinal ve tarafımdan üretilmiş olup başka bir çalışmadan kopyalanmamış veya intihal yapılmamıştır. Çalışmada kullanılan tüm kaynaklar, akademik etik ilkeler doğrultusunda doğru bir şekilde belirtilmiştir. Bu beyanla, Makalemizin etik kurallar çerçevesinde hazırlandığını ve bilimsel çalışmalara katkıda bulunmayı amaçladığını taahhüt ederim.

Supporting Institution

Yok

Project Number

YOK.

References

  • Hu, J., Wen, W., Zhai, C., & Pei, S. (2024). A comprehensive review of resilience of urban metro systems: A perspective from earthquake engineering. Tunnelling and Underground Space Technology, 90 (4), 99–126.
  • Demir, Fatma, and Mehmet, Saltan. (2017). "Deprem Etkisi Altında Demiryolu Üst Yapısı Davranışlarının İncelenmesi." Mühendislik Bilimleri ve Tasarım Dergisi 5(3), 615-620.
  • Omidvar, B., Malekshah, M. H., & Omidvar, H. (2014). Failure risk assessment of interdependent infrastructures against earthquake: A Petri net approach—case study: power and water distribution networks. Natural Hazards, 71(3), 1971–1993.
  • Huang, Wujing, et al. (2021). Resilience oriented planning of urban multi-energy systems with generalized energy storage sources. IEEE-Transactions on Power Systems 37(4), 2906-2918.
  • E. Karakaş And O. Armağan, (2024). Ensurıng Energy Contınuıty ın Dısaster And Emergency Sıtuatıons ın Metro Lınes, an Exemplary Emergency Investıgatıon Imascon 2024 Autumn Nov 29-30, 2024 Kocaeli/Türkiye, Internatıonal Marmara Scıence and Socıal Scıences Congress, Scıences Proeceedıngs Book vol.1, no.1, Kocaeli, Turkey,29(30), 322-330.
  • Kırlangıçoğlu, Cem. (2022). Metro İstasyonu Tasarımlarının Normal İşletme ve Acil Durum Tahliye Senaryoları Açısından 3 Boyutlu Simülasyon Teknolojisi ile Değerlendirilmesi. Demiryolu Mühendisliği 8(16), 51-65.
  • Singh, M. K., & Tripathi, R. K. (2020). Optimal operation and energy management of emergency power systems in microgrids. IEEE Transactions on Smart Grid, 102(6), 1970 –1993.
  • Shang, Jingfu, et al. (2009) The optimized allocation of mobile emergency generator based on the loads importance. 2009 Asia-Pacific Power and Energy Engineering Conference IEEE 435(6) 180 –198.
  • Ioannou, Ioanna, et al. (2022). Prioritization of hazards for risk and resilience management through elicitation of expert judgement. Natural hazards 112(3) 2773-2795.
  • Johansson, Jonas, Henrik Hassel, and Enrico Zio. (2013). Reliability and vulnerability analyses of critical infrastructures, Comparing two approaches in the context of power systems. Reliability Engineering & System Safety 120(9), 27-38.
  • Dey, P. K. (2001). Decision support system for inspection and maintenance: a risk-based approach. Reliability Engineering & System Safety, 72(3), 241–247.
  • Şen, Z., & Başar, E. (2019). Application of Fine–Kinney and AHP integrated approach for risk assessment of a metro construction project in Istanbul. Tunnelling and Underground Space Technology, 88(3) 172–180.
  • Cui, Hongjun, et al. (2024). Earthquake preparedness based on reliability and relief of the emergency supply network: Pre-storage and pre-matching. Transportation Safety and Environment 6.(4), 0 - 21.
  • Karakulak, Enes, and Yalçın Eyigün (2022). Kent İçi Raylı Sistemlerde Ve Ana Hat Demiryollarında Acil Durumda Yolcu Tahliyesi. İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi 4(2), 157-172.
  • Leoutsakos, George, et al. (2022). Metro Braking Energy for Station Electric Loads: The Business Case of a Smart Hybrid Storage System. Conference on Sustainable Urban Mobility. Cham: Springer Nature Switzerland, 21(3), 2110-2130.
  • Liao, Jinlin, et al. (2021). Energy-saving optimization strategy of multi-train metro timetable based on dual decision variables, A case study of Shanghai Metro line one. Journal of Rail Transport Planning & Management 17 (1) 02 - 34.
  • Hu, Xiaojuan, et al. (2025). Optimal energy management of a DC power traction system in an urban electric railway network with dogleg method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 47(1) 4663-4684.
  • Chen, Yu, Xinyue Yu, and Zhengyan Yang. (2025). A fuzzy decision support system for risk prioritization in fine kinney-based occupational risk analysis. Journal of Soft Computing and Decision Analytics 3(1) 1-17.
  • Wang, Guangpeng, et al. (2021). Flood risk assessment of metro system using improved trapezoidal fuzzy AHP: A case study of Guangzhou. Remote Sensing 13.(24) 51 - 54.
  • Qi, Qingjie, et al. (2022). Resilience assessment of an Urban Metro Complex Network, case study of the Zhengzhou Metro, Recovery, Utilization, and Environmental Effects 14.(18) 115 – 135.
There are 20 citations in total.

Details

Primary Language English
Subjects Energy, Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Osman Armağan 0000-0001-6062-8551

Ercüment Karakaş 0000-0003-4219-5160

Abdulhakim Karakaya 0000-0003-1119-6945

Project Number YOK.
Early Pub Date September 15, 2025
Publication Date September 24, 2025
Submission Date February 20, 2025
Acceptance Date August 16, 2025
Published in Issue Year 2025 Volume: 37 Issue: 3

Cite

APA Armağan, O., Karakaş, E., & Karakaya, A. (2025). Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment. International Journal of Advances in Engineering and Pure Sciences, 37(3), 356-368. https://doi.org/10.7240/jeps.1643538
AMA Armağan O, Karakaş E, Karakaya A. Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment. JEPS. September 2025;37(3):356-368. doi:10.7240/jeps.1643538
Chicago Armağan, Osman, Ercüment Karakaş, and Abdulhakim Karakaya. “Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment”. International Journal of Advances in Engineering and Pure Sciences 37, no. 3 (September 2025): 356-68. https://doi.org/10.7240/jeps.1643538.
EndNote Armağan O, Karakaş E, Karakaya A (September 1, 2025) Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment. International Journal of Advances in Engineering and Pure Sciences 37 3 356–368.
IEEE O. Armağan, E. Karakaş, and A. Karakaya, “Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment”, JEPS, vol. 37, no. 3, pp. 356–368, 2025, doi: 10.7240/jeps.1643538.
ISNAD Armağan, Osman et al. “Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment”. International Journal of Advances in Engineering and Pure Sciences 37/3 (September2025), 356-368. https://doi.org/10.7240/jeps.1643538.
JAMA Armağan O, Karakaş E, Karakaya A. Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment. JEPS. 2025;37:356–368.
MLA Armağan, Osman et al. “Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. 3, 2025, pp. 356-68, doi:10.7240/jeps.1643538.
Vancouver Armağan O, Karakaş E, Karakaya A. Implementation of the System Ensuring Energy Continuity of Metro Lines in Disaster and Emergency Situations in Matlab Environment. JEPS. 2025;37(3):356-68.