Research Article
BibTex RIS Cite

Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair

Year 2025, Volume: 37 Issue: 3, 299 - 307, 24.09.2025
https://doi.org/10.7240/jeps.1701231

Abstract

Since the skin is the outermost organ with the largest surface area, any disruption to this tissue can significantly affect human life. Such injuries often lead to hospitalization, pain, trauma, risk of scarring, and infections, and therefore require immediate treatment. Hydrofiber systems and wound dressings are extensively investigated and represent innovative fields that support skin regeneration, prevent infections, and promote rapid recovery with reduced pain. Biologically active ingredients play a crucial role in modulating biological and cellular pathways and are widely applied in wound healing and skin regeneration strategies. Natural polymers, due to their biological origin, inherent bioactivity, and their ability to mimic naturally occurring growth factors, are considered promising candidates for wound healing applications. Nature serves as a rich source of biopolymers, and plant extracts have been used since time immemorial for therapeutic purposes. Cydonia oblonga, commonly known as quince, is recognized for its diverse bioactivities that support wound healing and the treatment of skin ailments. In this study, a commercially available hydrofiber dressing enriched with quince seed mucilage (QSM) was evaluated. The QSM enrichment demonstrated improved cellular viability in Human Keratinocyte Cell Lines (HaCaT) when compared to control and hydrofibers.

Thanks

I would like to thank my son Artun for his invaluable presence and admirable patience in the lab—an impressive feat for a 5-year-old companion.

References

  • Bailey, A.J. (2001). Molecular mechanisms of ageing in connective tissues. Mechanisms of Ageing and Development, (122), 735-755.
  • Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V.A.& Singh, S.R. (2017). Advances in skin regeneration using tissue engineering. International Journal of Molecular Sciences, 18(4), 789-
  • Wong, D.J. & Chang, H.Y.(2009) Skin tissue engineering. StemBook. Girard L. (Ed). Harvard Stem Cell Institute, Cambridge (MA).
  • Yildirimer, L., Thanh, N.T. & Seifalian, A.M. (2012). Skin regeneration scaffolds: a multimodal bottom-up approach. Trends in Biotechnology, 30, 638-648.
  • Selvi, S. S., Hasköylü, M. E., & Öner, E.T. (2022). Skin Tissue Engineering: Past, Present, and Perspectives. In Tissue Engineering (First edition, pp. 159-202). Apple Academic Press, United States.
  • Erginer, M., Gökalsin, B., Tornaci, S., Sesal, C., & Öner, E. T. (2023). Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. International Journal of Biological Macromolecules, 240, 124418.
  • Adigbli, G., Alshomer, F., Maksimcuka, J., & Ghali, S. (2016). Principles of plastic surgery, wound healing, skin grafts and flaps. Textbook of plastic and reconstructive surgery, 1, 3-37.
  • Madaghiele, M., Demitri, C., Sannino, A., & Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & trauma, 2(4), 2321-3868.
  • Barrientos, S., Brem, H., Stojadinovic, O., & Tomic‐Canic, M. (2014). Clinical application of growth factors and cytokines in wound healing. Wound repair and regeneration, 22(5), 569-578.
  • Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic‐Canic, M. (2008). Growth factors and cytokines in wound healing. Wound repair and regeneration, 16(5), 585-601.
  • Zhang, M. Z., Dong, X. H., Guan, E. L., Si, L. B., Zhuge, R. Q., Zhao, P. X. & Wang, X. (2017). A comparison of apoptosis levels in keloid tissue, physiological scars and normal skin. American journal of translational research, 9(12), 5548.
  • Castano, O., Pérez-Amodio, S., Navarro-Requena, C., Mateos-Timoneda, M. Á., & Engel, E. (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Advanced drug delivery reviews, 129, 95-117
  • Rahmani Del Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., ... & Montaseri, A. (2018). Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial cells, nanomedicine, and biotechnology, 46(4), 691-705.
  • Iqbal, N., Khan, A. S., Asif, A., Yar, M., Haycock, J. W., & Rehman, I. U. (2019). Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. International Materials Reviews, 64(2), 91-126.
  • Tchobanian, A., Van Oosterwyck, H., & Fardim, P. (2019). Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydrate polymers, 205, 601-625.
  • Gao, C., Zhang, L., Wang, J., Jin, M., Tang, Q., Chen, Z., ... & Zhao, G. (2021). Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. Journal of Materials Chemistry B, 9(14), 3106-3130
  • Parthasarathy, V., Babu, M. D., Kumar, P. S., Arivazhagan, T., Sundaresan, B., & Chandrasekar, M. (2025). Advanced PLA biocomposites for tissue engineering and drug delivery applications. In Natural Fiber-Reinforced PLA Composites (pp. 251-269). Woodhead Publishing
  • Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., ... & Li, C. (2025). Wound dressings using electrospun nanofibers: mechanisms, applications, and future directions. European Polymer Journal, 113900.
  • Bedian, L., Villalba-Rodríguez, A. M., Hernández-Vargas, G., Parra-Saldivar, R. & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications–A review. Interntional Journal of Biological Macromolecules, 98, 837-846
  • Bhardwaj, N., Chouhan, D. & Mandal, B. B. (2018) Functional 3D Tissue Engineering Scaffolds (Deng &Kuiper Ed), 3D functional scaffolds for skin tissue engineering Woodhead Publishing: Cambridge, United Kingdom.
  • Mogoşanu, G. D. & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463, 127-136.
  • Najman, K., Adrian, S., Sadowska, A., Świąder, K., Hallmann, E., Buczak, K., ... & Szterk, A. (2023). Changes in physicochemical and bioactive properties of quince (Cydonia oblonga Mill.) and its products. Molecules, 28(7), 306.
  • Hanan, E., Sharma, V. & Ahmad, F. (2020). Nutritional Composition, Phytochemistry and Medicinal Use of Quince (Cydonia oblonga Miller) with Emphasis on its Processed and Fortified Food Products. Journal of Food Processing & Technology, 11, 1–13.
  • Silva, B.M., Casal, S., Andrade, P.B., Seabra, R.M., Oliveira, M.B.& Ferreira, M.A. (2004) Free amino acid composition of quince (Cydonia oblonga Miller) fruit (pulp and peel) and jam. Joujrnal of Agricultural and Food Chemistry, 52, 1201–1206.
  • Hegedűs, A., Papp, N., & Stefanovits-Bányai, É. (2013). Review of nutritional value and putative health-effects of quince (Cydonia oblonga Mill.) fruit. International Journal of Horticultural Science, 19(3-4), 29-32.
  • Ghopur, H., Usmanova, S. K., Ayupbek, A., & Aisa, H. A. (2012). A new chromone from seeds of Cydonia oblonga. Chemistry of Natural Compounds, 48, 562-564.
  • Ermiş, I. S., Deveci, E., & Aşır, F. (2023). Effects of Quince Gel and Hesperidin Mixture on Experimental Endometriosis. Molecules, 28(16), 5945.
  • Tamri, P., Hemmati, A., & Boroujerdnia, M. G. (2014). Wound healing properties of quince seed mucilage: In vivoevaluation in rabbit full-thickness wound model. International Journal of Surgery, 12(8), 843-847.
  • Alizadeh, H., Rahnema, M., Semnani, S. N., & Hajizadeh, N. (2013). Detection of compounds and antibacterial effect of quince (Cydonia oblonga Miller) extracts in vitro and in vivo. Journal of Biologically Active Products from Nature, 3(5-6), 303-309.
  • Mirzaii, M., Yaeghoobi, M., Afzali, M., Amirkhalili, N., Mahmoodi, M., & Sajirani, E. B. (2021). Antifungal activities of quince seed mucilage hydrogel decorated with essential oils of Nigella sativa, Citrus sinensis and Cinnamon verum. Iranian journal of microbiology, 13(3), 352
  • Aghmiuni, A. I., Keshel, S. H., Sefat, F., & Khiyavi, A. A. (2020). Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. International journal of biological macromolecules, 142, 668-679.
  • Ali, A. B., Ahmed, T. A., Saydaxmetova, S., Mayani, S. V., Ballal, S., Gupta, H., ... & Islam, S. (2025). Quince Seed Mucilage mediated biosynthesis of silver nanoparticles as a novel nanocatalyst for O-acetylation of alcohols. Journal of Organometallic Chemistry, 123683.
  • ISO 10993-5:2009, Biological evaluation of biomedical devices-chapter 5: in- vitro cytotoxicity tests.
  • Tornaci, S., Erginer, M., Bulut, U., Sener, B., Persilioglu, E., Kalaycilar, İ. B., ... & Barlas, F. B. (2024). Innovative fluorescent polymers in niosomal carriers: a novel approach to enhancing cancer therapy and imaging. Macromolecular Bioscience, 2400343
  • ISO10993-12:2021, Biological evaluation of biomedical devices-chapter 12: sample preparation and reference materials.
  • Yousuf, S., & Maktedar, S. S. (2023). Utilization of quince (Cydonia oblonga) seeds for production of mucilage: functional, thermal and rheological characterization. Sustainable Food Technology, 1(1), 107-115.
  • Fatima, Z., Fatima, S., Muhammad, G., Hussain, M. A., Raza, M. A., Amin, M., & Majeed, A. (2024). Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. International Journal of Biological Macromolecules, 133016
  • Hosseinzadeh, H., & Mohammadi, S. (2015). Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydrate polymers, 134, 213-221.
  • Şimşek, E., Karaca, B., & Arslan, Y. E. (2020). Bioengineered three-dimensional physical constructs from quince seed mucilage for human adipose-derived mesenchymal stem cells. Journal of Bioactive and Compatible Polymers, 35(3), 240-
  • Sharifipour, F., Salari, N., Jamshidi, N., Javanbakht, Z., Azizi, F., & Faal Siahkal, S. (2025). The effect of quince seed mucilage on perineal pain and healing following episiotomy: A randomised, triple‐blind, placebo‐controlled study. Wound Repair and Regeneration, 33(2), e70012
  • Yilmaz, H. D., Cengiz, U., Arslan, Y. E., Kiran, F., & Ceylan, A. (2021). From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol–gel reaction. Journal of bioscience and bioengineering, 131(4), 420-433
  • Kolay, S., Apohan, N. K., Babuç, E., & Gün, G. (2025). Investigation of Curcumin-β-Cyclodextrin Complex Release in Injectable Hyaluronic Acid/Quince Seed Gum Hydrogel. American Association of Pharmaceutical Scientists, 26(4), 99.
  • Mammadov, B., Mammadov, E., Becer, E., & Vatansever, H. S. (2024). The Effect of Quince Seed Mucilage on Human Foreskin Stem Cell Proliferation and Self-Renewal Potential. Cyprus Journal of Medical Sciences,9(6):444-449

Kutanöz Doku Onarımı için Cydonia oblonga Tohum Müsilajı İçeren Biyoaktif Hidrofiber Sargılar

Year 2025, Volume: 37 Issue: 3, 299 - 307, 24.09.2025
https://doi.org/10.7240/jeps.1701231

Abstract

Cilt, vücudumuzun en dışında bulunan ve en geniş yüzey alanına sahip organ olduğu için, bu dokuda meydana gelen herhangi bir bozulma veya hasar insan yaşamını önemli ölçüde etkileyebilmektedir. Bu tür yaralanmalar genellikle hastaneye yatış, ağrı, travma, yara izi riski ve enfeksiyonlarla sonuçlanabilmekte ve bu nedenle acil tedavi gerektirmektedir. Hidrofiber sistemler ve yara örtüleri, cilt yenilenmesini destekleyen, enfeksiyonları önleyen ve daha az ağrıyla hızlı iyileşmeyi teşvik eden yenilikçi yaklaşımlar olarak kapsamlı şekilde araştırılmaktadır. Biyolojik olarak aktif bileşenler, biyolojik ve hücresel yolları düzenlemede önemli rol oynamakta ve yara iyileşmesi ile cilt yenilenmesi stratejilerinde yaygın olarak kullanılmaktadır. Doğal polimerler, biyolojik kökenleri, doğal biyoaktif özellikleri ve büyüme faktörlerini taklit etme yetenekleri nedeniyle yara iyileştirme uygulamaları için umut verici adaylar olarak değerlendirilmektedir. Doğa, biyopolimerler açısından zengin bir kaynak olup, bitki özleri tarih boyunca tedavi amaçlı kullanılmıştır. Ayva olarak bilinen Cydonia oblonga, yara iyileşmesini ve cilt hastalıklarının tedavisini destekleyen çeşitli biyolojik aktiviteleri ile tanınmaktadır. Bu çalışmada, ticari olarak temin edilen bir hidrofiber yara örtüsünün, ayva çekirdeği müsilajı (QSM) ile zenginleştirilmiş halinin biyolojik aktivitesi incelenmiştir. QSM ile zenginleştirilen örneklerin, kontrol ve yalnızca hidrofiber ile karşılaştırıldığında İnsan Keratinosit Hücre Hatlarında (HaCaT) hücre canlılığı ve çoğalmasını artırdığı gösterilmiştir.

References

  • Bailey, A.J. (2001). Molecular mechanisms of ageing in connective tissues. Mechanisms of Ageing and Development, (122), 735-755.
  • Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V.A.& Singh, S.R. (2017). Advances in skin regeneration using tissue engineering. International Journal of Molecular Sciences, 18(4), 789-
  • Wong, D.J. & Chang, H.Y.(2009) Skin tissue engineering. StemBook. Girard L. (Ed). Harvard Stem Cell Institute, Cambridge (MA).
  • Yildirimer, L., Thanh, N.T. & Seifalian, A.M. (2012). Skin regeneration scaffolds: a multimodal bottom-up approach. Trends in Biotechnology, 30, 638-648.
  • Selvi, S. S., Hasköylü, M. E., & Öner, E.T. (2022). Skin Tissue Engineering: Past, Present, and Perspectives. In Tissue Engineering (First edition, pp. 159-202). Apple Academic Press, United States.
  • Erginer, M., Gökalsin, B., Tornaci, S., Sesal, C., & Öner, E. T. (2023). Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. International Journal of Biological Macromolecules, 240, 124418.
  • Adigbli, G., Alshomer, F., Maksimcuka, J., & Ghali, S. (2016). Principles of plastic surgery, wound healing, skin grafts and flaps. Textbook of plastic and reconstructive surgery, 1, 3-37.
  • Madaghiele, M., Demitri, C., Sannino, A., & Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & trauma, 2(4), 2321-3868.
  • Barrientos, S., Brem, H., Stojadinovic, O., & Tomic‐Canic, M. (2014). Clinical application of growth factors and cytokines in wound healing. Wound repair and regeneration, 22(5), 569-578.
  • Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic‐Canic, M. (2008). Growth factors and cytokines in wound healing. Wound repair and regeneration, 16(5), 585-601.
  • Zhang, M. Z., Dong, X. H., Guan, E. L., Si, L. B., Zhuge, R. Q., Zhao, P. X. & Wang, X. (2017). A comparison of apoptosis levels in keloid tissue, physiological scars and normal skin. American journal of translational research, 9(12), 5548.
  • Castano, O., Pérez-Amodio, S., Navarro-Requena, C., Mateos-Timoneda, M. Á., & Engel, E. (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Advanced drug delivery reviews, 129, 95-117
  • Rahmani Del Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., ... & Montaseri, A. (2018). Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial cells, nanomedicine, and biotechnology, 46(4), 691-705.
  • Iqbal, N., Khan, A. S., Asif, A., Yar, M., Haycock, J. W., & Rehman, I. U. (2019). Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. International Materials Reviews, 64(2), 91-126.
  • Tchobanian, A., Van Oosterwyck, H., & Fardim, P. (2019). Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydrate polymers, 205, 601-625.
  • Gao, C., Zhang, L., Wang, J., Jin, M., Tang, Q., Chen, Z., ... & Zhao, G. (2021). Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. Journal of Materials Chemistry B, 9(14), 3106-3130
  • Parthasarathy, V., Babu, M. D., Kumar, P. S., Arivazhagan, T., Sundaresan, B., & Chandrasekar, M. (2025). Advanced PLA biocomposites for tissue engineering and drug delivery applications. In Natural Fiber-Reinforced PLA Composites (pp. 251-269). Woodhead Publishing
  • Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., ... & Li, C. (2025). Wound dressings using electrospun nanofibers: mechanisms, applications, and future directions. European Polymer Journal, 113900.
  • Bedian, L., Villalba-Rodríguez, A. M., Hernández-Vargas, G., Parra-Saldivar, R. & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications–A review. Interntional Journal of Biological Macromolecules, 98, 837-846
  • Bhardwaj, N., Chouhan, D. & Mandal, B. B. (2018) Functional 3D Tissue Engineering Scaffolds (Deng &Kuiper Ed), 3D functional scaffolds for skin tissue engineering Woodhead Publishing: Cambridge, United Kingdom.
  • Mogoşanu, G. D. & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463, 127-136.
  • Najman, K., Adrian, S., Sadowska, A., Świąder, K., Hallmann, E., Buczak, K., ... & Szterk, A. (2023). Changes in physicochemical and bioactive properties of quince (Cydonia oblonga Mill.) and its products. Molecules, 28(7), 306.
  • Hanan, E., Sharma, V. & Ahmad, F. (2020). Nutritional Composition, Phytochemistry and Medicinal Use of Quince (Cydonia oblonga Miller) with Emphasis on its Processed and Fortified Food Products. Journal of Food Processing & Technology, 11, 1–13.
  • Silva, B.M., Casal, S., Andrade, P.B., Seabra, R.M., Oliveira, M.B.& Ferreira, M.A. (2004) Free amino acid composition of quince (Cydonia oblonga Miller) fruit (pulp and peel) and jam. Joujrnal of Agricultural and Food Chemistry, 52, 1201–1206.
  • Hegedűs, A., Papp, N., & Stefanovits-Bányai, É. (2013). Review of nutritional value and putative health-effects of quince (Cydonia oblonga Mill.) fruit. International Journal of Horticultural Science, 19(3-4), 29-32.
  • Ghopur, H., Usmanova, S. K., Ayupbek, A., & Aisa, H. A. (2012). A new chromone from seeds of Cydonia oblonga. Chemistry of Natural Compounds, 48, 562-564.
  • Ermiş, I. S., Deveci, E., & Aşır, F. (2023). Effects of Quince Gel and Hesperidin Mixture on Experimental Endometriosis. Molecules, 28(16), 5945.
  • Tamri, P., Hemmati, A., & Boroujerdnia, M. G. (2014). Wound healing properties of quince seed mucilage: In vivoevaluation in rabbit full-thickness wound model. International Journal of Surgery, 12(8), 843-847.
  • Alizadeh, H., Rahnema, M., Semnani, S. N., & Hajizadeh, N. (2013). Detection of compounds and antibacterial effect of quince (Cydonia oblonga Miller) extracts in vitro and in vivo. Journal of Biologically Active Products from Nature, 3(5-6), 303-309.
  • Mirzaii, M., Yaeghoobi, M., Afzali, M., Amirkhalili, N., Mahmoodi, M., & Sajirani, E. B. (2021). Antifungal activities of quince seed mucilage hydrogel decorated with essential oils of Nigella sativa, Citrus sinensis and Cinnamon verum. Iranian journal of microbiology, 13(3), 352
  • Aghmiuni, A. I., Keshel, S. H., Sefat, F., & Khiyavi, A. A. (2020). Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. International journal of biological macromolecules, 142, 668-679.
  • Ali, A. B., Ahmed, T. A., Saydaxmetova, S., Mayani, S. V., Ballal, S., Gupta, H., ... & Islam, S. (2025). Quince Seed Mucilage mediated biosynthesis of silver nanoparticles as a novel nanocatalyst for O-acetylation of alcohols. Journal of Organometallic Chemistry, 123683.
  • ISO 10993-5:2009, Biological evaluation of biomedical devices-chapter 5: in- vitro cytotoxicity tests.
  • Tornaci, S., Erginer, M., Bulut, U., Sener, B., Persilioglu, E., Kalaycilar, İ. B., ... & Barlas, F. B. (2024). Innovative fluorescent polymers in niosomal carriers: a novel approach to enhancing cancer therapy and imaging. Macromolecular Bioscience, 2400343
  • ISO10993-12:2021, Biological evaluation of biomedical devices-chapter 12: sample preparation and reference materials.
  • Yousuf, S., & Maktedar, S. S. (2023). Utilization of quince (Cydonia oblonga) seeds for production of mucilage: functional, thermal and rheological characterization. Sustainable Food Technology, 1(1), 107-115.
  • Fatima, Z., Fatima, S., Muhammad, G., Hussain, M. A., Raza, M. A., Amin, M., & Majeed, A. (2024). Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. International Journal of Biological Macromolecules, 133016
  • Hosseinzadeh, H., & Mohammadi, S. (2015). Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydrate polymers, 134, 213-221.
  • Şimşek, E., Karaca, B., & Arslan, Y. E. (2020). Bioengineered three-dimensional physical constructs from quince seed mucilage for human adipose-derived mesenchymal stem cells. Journal of Bioactive and Compatible Polymers, 35(3), 240-
  • Sharifipour, F., Salari, N., Jamshidi, N., Javanbakht, Z., Azizi, F., & Faal Siahkal, S. (2025). The effect of quince seed mucilage on perineal pain and healing following episiotomy: A randomised, triple‐blind, placebo‐controlled study. Wound Repair and Regeneration, 33(2), e70012
  • Yilmaz, H. D., Cengiz, U., Arslan, Y. E., Kiran, F., & Ceylan, A. (2021). From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol–gel reaction. Journal of bioscience and bioengineering, 131(4), 420-433
  • Kolay, S., Apohan, N. K., Babuç, E., & Gün, G. (2025). Investigation of Curcumin-β-Cyclodextrin Complex Release in Injectable Hyaluronic Acid/Quince Seed Gum Hydrogel. American Association of Pharmaceutical Scientists, 26(4), 99.
  • Mammadov, B., Mammadov, E., Becer, E., & Vatansever, H. S. (2024). The Effect of Quince Seed Mucilage on Human Foreskin Stem Cell Proliferation and Self-Renewal Potential. Cyprus Journal of Medical Sciences,9(6):444-449
There are 43 citations in total.

Details

Primary Language English
Subjects Animal Cell Culture and Tissue Engineering
Journal Section Research Articles
Authors

Merve Erginer 0000-0001-6008-1322

Early Pub Date September 15, 2025
Publication Date September 24, 2025
Submission Date May 17, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 37 Issue: 3

Cite

APA Erginer, M. (2025). Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair. International Journal of Advances in Engineering and Pure Sciences, 37(3), 299-307. https://doi.org/10.7240/jeps.1701231
AMA Erginer M. Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair. JEPS. September 2025;37(3):299-307. doi:10.7240/jeps.1701231
Chicago Erginer, Merve. “Bioactive Hydrofiber Dressings With Quince (Cydonia Oblonga) Seed Mucilage for Cutaneous Tissue Repair”. International Journal of Advances in Engineering and Pure Sciences 37, no. 3 (September 2025): 299-307. https://doi.org/10.7240/jeps.1701231.
EndNote Erginer M (September 1, 2025) Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair. International Journal of Advances in Engineering and Pure Sciences 37 3 299–307.
IEEE M. Erginer, “Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair”, JEPS, vol. 37, no. 3, pp. 299–307, 2025, doi: 10.7240/jeps.1701231.
ISNAD Erginer, Merve. “Bioactive Hydrofiber Dressings With Quince (Cydonia Oblonga) Seed Mucilage for Cutaneous Tissue Repair”. International Journal of Advances in Engineering and Pure Sciences 37/3 (September2025), 299-307. https://doi.org/10.7240/jeps.1701231.
JAMA Erginer M. Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair. JEPS. 2025;37:299–307.
MLA Erginer, Merve. “Bioactive Hydrofiber Dressings With Quince (Cydonia Oblonga) Seed Mucilage for Cutaneous Tissue Repair”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. 3, 2025, pp. 299-07, doi:10.7240/jeps.1701231.
Vancouver Erginer M. Bioactive Hydrofiber Dressings with Quince (Cydonia oblonga) Seed Mucilage for Cutaneous Tissue Repair. JEPS. 2025;37(3):299-307.