Review Article
BibTex RIS Cite

Year 2025, Volume: 2 Issue: 1, 35 - 39, 31.07.2025
https://doi.org/10.5281/zenodo.16606167

Abstract

References

  • Ahmad, M. S., Mehmood, M. A., Al Ayed, O. S., Ye, G., Luo, H., Ibrahim, M., ... & Qadir, G. (2017). Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource technology, 224, 708-713.
  • Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., da Silva Filho, V. F., Di Domenico, M., de Sena, R. F., ... & Marangoni, C. (2022). Thermo-kinetic investigation of the multi-step pyrolysis of smoked cigarette butts towards its energy recovery potential. Biomass Conversion and Biorefinery, 12(3), 741-755.
  • Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., Alves, R. F., Di Domenico, M., & Marangoni, C. (2023). Physicochemical properties, pyrolysis kinetics, thermodynamic parameters of activation, and evolved volatiles of mango seed waste as a bioenergy feedstock: a potential exploration. Thermochimica Acta, 725, 179519.
  • Bottom, R. (2008). Thermogravimetric analysis. Principles and applications of thermal analysis, 87-118.
  • Janković, B., & Manić, N. (2021). Kinetic analysis and reaction mechanism of p-alkoxybenzyl alcohol ([4-(hydroxymethyl) phenoxymethyl] polystyrene) resin pyrolysis: Revealing new information on thermal stability. Polymer Degradation and Stability, 189, 109606.
  • Kabakçı, G., Caner, S., Yıldırım, C., Sakallı, B., Yakışık, Z. B., Babür, E., & Kılınçel, M. (2025). A detailed investigation into the curing kinetics of zinc borate-epoxy composites. Solid State Sciences, 107926.
  • Kumar, M., Yadav, R., Patel, A. K., Bindal, M., Upadhyay, S. N., & Mishra, P. K. (2023). Effect of chemical treatment on thermal degradation behavior of litchi seed biomass. Journal of Thermal Analysis and Calorimetry, 148(14), 6927-6944.
  • Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., & Hii, K. L. (2016). Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng, 148, 1247-1251.
  • Qi, W., Yang, W., Xu, Q., Xu, Z., Wang, Q., Liang, C., ... & Yuan, Z. (2020). Comprehensive research on the influence of nonlignocellulosic components on the pyrolysis behavior of Chinese distiller’s grain. ACS Sustainable Chemistry & Engineering, 8(8), 3103-3113.
  • Rahib, Y., Sarh, B., Bostyn, S., Bonnamy, S., Boushaki, T., & Chaoufi, J. (2020). Non-isothermal kinetic analysis of the combustion of argan shell biomass. Materials Today: Proceedings, 24, 11-16.
  • Sharma, P., Pandey, O. P., & Diwan, P. K. (2019). Non-isothermal kinetics of pseudo-components of waste biomass. Fuel, 253, 1149-1161.
  • Shen, D. K., & Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource technology, 100(24), 6496-6504.
  • Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., ... & Shui, H. (2020). Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conversion, 3, 173-181.
  • Yao, Z., Yu, S., Su, W., Wu, D., Wu, W., & Tang, J. (2020). Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries. Waste Management & Research, 38(1), 100-106.
  • Zhang, J., Ding, Y., Du, W., Lu, K., & Sun, L. (2021). Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel, 296, 120696.

Thermal Degradation Properties And Thermodynamics Of Cellulosic Biomasses

Year 2025, Volume: 2 Issue: 1, 35 - 39, 31.07.2025
https://doi.org/10.5281/zenodo.16606167

Abstract

In this article, a compilation of articles examining the thermal and thermodynamic degradation of cellulose cores that occur naturally in nature and are produced as waste from foods consumed as food in daily life is presented. Thermal degradation behaviour and thermodynamic properties of cellulosic biomasses are investigated using thermogravimetric analysis (TGA) using different atmospheres. The aim of the studies was to understand the degradation properties and evaluate the energy parameters that are critical for bioenergy applications. Many different methods are used to evaluate the kinetic parameters without assuming a specific reaction mechanism. These methods are divided into two groups as model-fitting and model-free. Degradation of cellulosic substances can be single or multi-step according to their content. Thermodynamic triplet can be calculated from these calculations. Activation energy values were determined as a function of the degree of conversion by revealing the different stages in the degradation process corresponding to the decomposition of hemicellulose, cellulose and lignin. Thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) were also calculated to evaluate the energetic feasibility and spontaneity of thermal reactions. The results show that cellulosic biomass exhibits a multistep degradation process with a significant change in activation energy across the conversion range. These findings provide valuable insights for the optimization of thermal conversion technologies such as pyrolysis and gasification and provide a basis for designing efficient biomass-to-energy systems.

References

  • Ahmad, M. S., Mehmood, M. A., Al Ayed, O. S., Ye, G., Luo, H., Ibrahim, M., ... & Qadir, G. (2017). Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource technology, 224, 708-713.
  • Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., da Silva Filho, V. F., Di Domenico, M., de Sena, R. F., ... & Marangoni, C. (2022). Thermo-kinetic investigation of the multi-step pyrolysis of smoked cigarette butts towards its energy recovery potential. Biomass Conversion and Biorefinery, 12(3), 741-755.
  • Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., Alves, R. F., Di Domenico, M., & Marangoni, C. (2023). Physicochemical properties, pyrolysis kinetics, thermodynamic parameters of activation, and evolved volatiles of mango seed waste as a bioenergy feedstock: a potential exploration. Thermochimica Acta, 725, 179519.
  • Bottom, R. (2008). Thermogravimetric analysis. Principles and applications of thermal analysis, 87-118.
  • Janković, B., & Manić, N. (2021). Kinetic analysis and reaction mechanism of p-alkoxybenzyl alcohol ([4-(hydroxymethyl) phenoxymethyl] polystyrene) resin pyrolysis: Revealing new information on thermal stability. Polymer Degradation and Stability, 189, 109606.
  • Kabakçı, G., Caner, S., Yıldırım, C., Sakallı, B., Yakışık, Z. B., Babür, E., & Kılınçel, M. (2025). A detailed investigation into the curing kinetics of zinc borate-epoxy composites. Solid State Sciences, 107926.
  • Kumar, M., Yadav, R., Patel, A. K., Bindal, M., Upadhyay, S. N., & Mishra, P. K. (2023). Effect of chemical treatment on thermal degradation behavior of litchi seed biomass. Journal of Thermal Analysis and Calorimetry, 148(14), 6927-6944.
  • Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., & Hii, K. L. (2016). Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng, 148, 1247-1251.
  • Qi, W., Yang, W., Xu, Q., Xu, Z., Wang, Q., Liang, C., ... & Yuan, Z. (2020). Comprehensive research on the influence of nonlignocellulosic components on the pyrolysis behavior of Chinese distiller’s grain. ACS Sustainable Chemistry & Engineering, 8(8), 3103-3113.
  • Rahib, Y., Sarh, B., Bostyn, S., Bonnamy, S., Boushaki, T., & Chaoufi, J. (2020). Non-isothermal kinetic analysis of the combustion of argan shell biomass. Materials Today: Proceedings, 24, 11-16.
  • Sharma, P., Pandey, O. P., & Diwan, P. K. (2019). Non-isothermal kinetics of pseudo-components of waste biomass. Fuel, 253, 1149-1161.
  • Shen, D. K., & Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource technology, 100(24), 6496-6504.
  • Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., ... & Shui, H. (2020). Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conversion, 3, 173-181.
  • Yao, Z., Yu, S., Su, W., Wu, D., Wu, W., & Tang, J. (2020). Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries. Waste Management & Research, 38(1), 100-106.
  • Zhang, J., Ding, Y., Du, W., Lu, K., & Sun, L. (2021). Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel, 296, 120696.
There are 15 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Reviews
Authors

Hatice Bayrakçeken 0000-0003-2472-9974

Publication Date July 31, 2025
Submission Date June 26, 2025
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Bayrakçeken, H. (2025). Thermal Degradation Properties And Thermodynamics Of Cellulosic Biomasses. Journal of Energy Trends, 2(1), 35-39. https://doi.org/10.5281/zenodo.16606167