Research Article
BibTex RIS Cite
Year 2023, , 15 - 33, 30.04.2023
https://doi.org/10.30931/jetas.1216025

Abstract

References

  • [1] CDC, "Viral Hepatitis", https://www.cdc.gov/hepatitis/hcv/index.htm, (2020).
  • [2] ECDC, "Hepatitis C", https://www.ecdc.europa.eu/en/hepatitis-c, (2022).
  • [3] Durmuş, M. E., "Buz Dağının Görünen Kısmı: Hcv Pozitif Hastalarda Tedaviye Ulaşma Oranları, Hekimlerin Yaklaşım Ve Farkındalıklarının Değerlendirilmesi", T.C. Sağlık Bilimleri Üniversitesi Antalya Sağlık Uygulama ve Araştırma Merkezi, Antalya, (2022).
  • [4] Feinstone, S.M., Kapikian, A.Z., Purcell, R.H., Alter, H.J., Holland, P.V., "Transfusion-Associated Hepatitis Not Due to Viral Hepatitis Type A or B", New England Journal of Medicine, vol. 292, no. 15, pp. 767–770, 1975, doi: 10.1056/NEJM197504102921502.
  • [5] WHO, "Hepatitis C." Jun. 2022.
  • [6] Dumanoğlu, B., "İstanbul medeniyet üniversitesi Göztepe Eğitim ve Araştırma Hastanesi`nde 2016-2018 yılları arasında direkt etkili antiviral tedavi alan kronik hepatit C hastalarının klinik, laboratuvar ve demografik özelliklerinin retrospektif incelenmesi", https://acikbilim.yok.gov.tr/handle/20.500.12812/290084, (2019).
  • [7] Maheshwari, A., Thuluvath, P. J., "Management of acute hepatitis C", Clin Liver Dis, 14(1) (2010) : 169-176.
  • [8] Strader, D. B., Wright, T., Thomas, D. L., Seeff, L. B., "Diagnosis, management, and treatment of hepatitis C", Hepatology 39(4) (2004) : 1147-1171.
  • [9] Demir, N., Kuncan, M., Kaya, Y., Kuncan, F., "Multi-Layer Co-Occurrence Matrices for Person Identification from ECG Signals.", Traitement du Signal 39(2) (2022).
  • [10] Sarmento, R., "Hepatitis C Records - A Complete Statistical Analysis.", Jan. 2021. doi: 10.13140/RG.2.2.22345.16481.
  • [11] Ahammed, K., Satu, M.S., Khan, M.I., Whaiduzzaman, M., "Predicting infectious state of hepatitis C virus affected patient’s applying machine learning methods", in 2020 IEEE Region 10 Symposium (TENSYMP), (2020) : 1371-1374.
  • [12] Syafa’ah, L., Zulfatman, Z., Pakaya, I., Lestandy, M., "Comparison of Machine Learning Classification Methods in Hepatitis C Virus", Jurnal Online Informatika 6(1) (2021) : 73, Jun., doi: 10.15575/join.v6i1.719.
  • [13] Rigg, J., Doyle, O., McDonogh, N., Leavitt, N., Ali, R., Son, A., Kreter, B., "Finding undiagnosed patients with hepatitis C virus: an application of machine learning to US ambulatory electronic medical records", BMJ Health Care Inform. 30(1) (2023) doi: 10.1136/bmjhci-2022-100651.
  • [14] Singh, U., Gourisaria, M.K., Mishra, B.K., "A Dual Dataset approach for the diagnosis of Hepatitis C Virus using Machine Learning", in 2022 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2022, 2022. doi: 10.1109/CONECCT55679.2022.9865758.
  • [15] Lichtinghagen, Ralf., Klawonn, F., Hoffmann, G., "UCI Machine Learning Repository", Available: http://archive.ics.uci.edu/ml/datasets/HCV+data, (2020).
  • [16] Hall, M.A., "Correlation-based feature selection for machine learning", The University of Waikato, (1999).
  • [17] Freeman, J.A., Skapura, D.M., "Neural networks: algorithms, applications, and programming techniques.", Addison Wesley Longman Publishing Co., Inc., (1991).
  • [18] Negnevitsky, M., "Artificial intelligence: a guide to intelligent systems.", Pearson education, (2005).
  • [19] Kim, H., Koehler, G.J., "Theory and practice of decision tree induction", Omega (Westport) 23(6) (1995) : 637-652.
  • [20] Suthaharan, S., Suthaharan, S., "Decision tree learning", Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning (2016) : 237–269.
  • [21] Altman, N.S., "An introduction to kernel and nearest-neighbor nonparametric regression", Am Stat 46(3) (1992) : 175-185,.
  • [22] Cover, H., Hart, P., "Nearest neighbor pattern classification", IEEE Trans. Inf. Theory 13(1) (1953) : 21-27.

Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases

Year 2023, , 15 - 33, 30.04.2023
https://doi.org/10.30931/jetas.1216025

Abstract

The Hepatitis C Virus (HCV) can cause chronic diseases and even lead to more serious conditions such as cirrhosis and fibrosis. Early detection of HCV infection is crucial to prevent these outcomes. However, in the early stages of infection, when symptoms are not yet evident, patients rarely undergo HCV testing. This highlights the need for alternative materials to guide HCV testing for early detection of the disease. In this study, we investigate the use of artificial intelligence technology to determine the disease status of individuals using blood data. A total of 615 individuals were included in the study. Preprocessing, filtering, feature selection, and classification processes were applied to the blood data. The correlation method was used for feature selection, where the features with high correlation values were selected and given as input to five different classification algorithms. The results of the study showed that the K-Nearest Neighbor (KNN) algorithm achieved the best classification success for detecting HCV patients, with a rate of 99.1%. This research demonstrates that artificial intelligence technology can be an effective tool for early detection of HCV-related diseases. The results indicate that the KNN algorithm can provide clear information about hepatitis infection from different blood values. Future studies can explore the use of other AI techniques and expand the sample size to improve the accuracy of the model.

References

  • [1] CDC, "Viral Hepatitis", https://www.cdc.gov/hepatitis/hcv/index.htm, (2020).
  • [2] ECDC, "Hepatitis C", https://www.ecdc.europa.eu/en/hepatitis-c, (2022).
  • [3] Durmuş, M. E., "Buz Dağının Görünen Kısmı: Hcv Pozitif Hastalarda Tedaviye Ulaşma Oranları, Hekimlerin Yaklaşım Ve Farkındalıklarının Değerlendirilmesi", T.C. Sağlık Bilimleri Üniversitesi Antalya Sağlık Uygulama ve Araştırma Merkezi, Antalya, (2022).
  • [4] Feinstone, S.M., Kapikian, A.Z., Purcell, R.H., Alter, H.J., Holland, P.V., "Transfusion-Associated Hepatitis Not Due to Viral Hepatitis Type A or B", New England Journal of Medicine, vol. 292, no. 15, pp. 767–770, 1975, doi: 10.1056/NEJM197504102921502.
  • [5] WHO, "Hepatitis C." Jun. 2022.
  • [6] Dumanoğlu, B., "İstanbul medeniyet üniversitesi Göztepe Eğitim ve Araştırma Hastanesi`nde 2016-2018 yılları arasında direkt etkili antiviral tedavi alan kronik hepatit C hastalarının klinik, laboratuvar ve demografik özelliklerinin retrospektif incelenmesi", https://acikbilim.yok.gov.tr/handle/20.500.12812/290084, (2019).
  • [7] Maheshwari, A., Thuluvath, P. J., "Management of acute hepatitis C", Clin Liver Dis, 14(1) (2010) : 169-176.
  • [8] Strader, D. B., Wright, T., Thomas, D. L., Seeff, L. B., "Diagnosis, management, and treatment of hepatitis C", Hepatology 39(4) (2004) : 1147-1171.
  • [9] Demir, N., Kuncan, M., Kaya, Y., Kuncan, F., "Multi-Layer Co-Occurrence Matrices for Person Identification from ECG Signals.", Traitement du Signal 39(2) (2022).
  • [10] Sarmento, R., "Hepatitis C Records - A Complete Statistical Analysis.", Jan. 2021. doi: 10.13140/RG.2.2.22345.16481.
  • [11] Ahammed, K., Satu, M.S., Khan, M.I., Whaiduzzaman, M., "Predicting infectious state of hepatitis C virus affected patient’s applying machine learning methods", in 2020 IEEE Region 10 Symposium (TENSYMP), (2020) : 1371-1374.
  • [12] Syafa’ah, L., Zulfatman, Z., Pakaya, I., Lestandy, M., "Comparison of Machine Learning Classification Methods in Hepatitis C Virus", Jurnal Online Informatika 6(1) (2021) : 73, Jun., doi: 10.15575/join.v6i1.719.
  • [13] Rigg, J., Doyle, O., McDonogh, N., Leavitt, N., Ali, R., Son, A., Kreter, B., "Finding undiagnosed patients with hepatitis C virus: an application of machine learning to US ambulatory electronic medical records", BMJ Health Care Inform. 30(1) (2023) doi: 10.1136/bmjhci-2022-100651.
  • [14] Singh, U., Gourisaria, M.K., Mishra, B.K., "A Dual Dataset approach for the diagnosis of Hepatitis C Virus using Machine Learning", in 2022 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2022, 2022. doi: 10.1109/CONECCT55679.2022.9865758.
  • [15] Lichtinghagen, Ralf., Klawonn, F., Hoffmann, G., "UCI Machine Learning Repository", Available: http://archive.ics.uci.edu/ml/datasets/HCV+data, (2020).
  • [16] Hall, M.A., "Correlation-based feature selection for machine learning", The University of Waikato, (1999).
  • [17] Freeman, J.A., Skapura, D.M., "Neural networks: algorithms, applications, and programming techniques.", Addison Wesley Longman Publishing Co., Inc., (1991).
  • [18] Negnevitsky, M., "Artificial intelligence: a guide to intelligent systems.", Pearson education, (2005).
  • [19] Kim, H., Koehler, G.J., "Theory and practice of decision tree induction", Omega (Westport) 23(6) (1995) : 637-652.
  • [20] Suthaharan, S., Suthaharan, S., "Decision tree learning", Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning (2016) : 237–269.
  • [21] Altman, N.S., "An introduction to kernel and nearest-neighbor nonparametric regression", Am Stat 46(3) (1992) : 175-185,.
  • [22] Cover, H., Hart, P., "Nearest neighbor pattern classification", IEEE Trans. Inf. Theory 13(1) (1953) : 21-27.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Muhammed Tayyip Koçak 0000-0003-2276-2658

Yılmaz Kaya 0000-0001-5167-1101

Fatma Kuncan 0000-0003-0712-6426

Early Pub Date April 29, 2023
Publication Date April 30, 2023
Published in Issue Year 2023

Cite

APA Koçak, M. T., Kaya, Y., & Kuncan, F. (2023). Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases. Journal of Engineering Technology and Applied Sciences, 8(1), 15-33. https://doi.org/10.30931/jetas.1216025
AMA Koçak MT, Kaya Y, Kuncan F. Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases. JETAS. April 2023;8(1):15-33. doi:10.30931/jetas.1216025
Chicago Koçak, Muhammed Tayyip, Yılmaz Kaya, and Fatma Kuncan. “Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases”. Journal of Engineering Technology and Applied Sciences 8, no. 1 (April 2023): 15-33. https://doi.org/10.30931/jetas.1216025.
EndNote Koçak MT, Kaya Y, Kuncan F (April 1, 2023) Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases. Journal of Engineering Technology and Applied Sciences 8 1 15–33.
IEEE M. T. Koçak, Y. Kaya, and F. Kuncan, “Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases”, JETAS, vol. 8, no. 1, pp. 15–33, 2023, doi: 10.30931/jetas.1216025.
ISNAD Koçak, Muhammed Tayyip et al. “Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases”. Journal of Engineering Technology and Applied Sciences 8/1 (April 2023), 15-33. https://doi.org/10.30931/jetas.1216025.
JAMA Koçak MT, Kaya Y, Kuncan F. Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases. JETAS. 2023;8:15–33.
MLA Koçak, Muhammed Tayyip et al. “Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases”. Journal of Engineering Technology and Applied Sciences, vol. 8, no. 1, 2023, pp. 15-33, doi:10.30931/jetas.1216025.
Vancouver Koçak MT, Kaya Y, Kuncan F. Using Artificial Intelligence Methods for Detection of HCV-Caused Diseases. JETAS. 2023;8(1):15-33.