Research Article
BibTex RIS Cite
Year 2023, , 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Abstract

References

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.

On Hybrid Curves

Year 2023, , 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Abstract

In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,<>) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret frame formulae of a non-lightlike hybrid curve in R^4 and an illustrative example for all theorems of the paper with MATLAB 2016a codes.

References

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.
There are 10 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Mücahit Akbıyık 0000-0002-0256-1472

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Akbıyık, M. (2023). On Hybrid Curves. Journal of Engineering Technology and Applied Sciences, 8(3), 119-130. https://doi.org/10.30931/jetas.1338660
AMA Akbıyık M. On Hybrid Curves. JETAS. December 2023;8(3):119-130. doi:10.30931/jetas.1338660
Chicago Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8, no. 3 (December 2023): 119-30. https://doi.org/10.30931/jetas.1338660.
EndNote Akbıyık M (December 1, 2023) On Hybrid Curves. Journal of Engineering Technology and Applied Sciences 8 3 119–130.
IEEE M. Akbıyık, “On Hybrid Curves”, JETAS, vol. 8, no. 3, pp. 119–130, 2023, doi: 10.30931/jetas.1338660.
ISNAD Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8/3 (December 2023), 119-130. https://doi.org/10.30931/jetas.1338660.
JAMA Akbıyık M. On Hybrid Curves. JETAS. 2023;8:119–130.
MLA Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences, vol. 8, no. 3, 2023, pp. 119-30, doi:10.30931/jetas.1338660.
Vancouver Akbıyık M. On Hybrid Curves. JETAS. 2023;8(3):119-30.