Research Article
BibTex RIS Cite
Year 2024, , 71 - 84, 30.08.2024
https://doi.org/10.30931/jetas.1475271

Abstract

References

  • Duren, P.L., “Univalent Functions In: Grundlehren der Mathematischen Wissenschaften”, Springer-Verlag (1983).
  • Fekete, M., Szegö, G., “Eine bemerkung über ungerade schlichte funktionen”, Journal of London Mathematical Society 1(2) (1933) : 85–89.
  • Zaprawa, P., “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bulletin of the Belgian Mathematical Society-Simon Stevin 21(1) (2014) : 169–178.
  • Srivastava, H.M., Mishra, A.K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters 23 (2010) : 1188–1192.
  • Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society 18 (1967) : 63–68.
  • Brannan, D., Clunie, J., “Aspects of contemporary complex analysis”, Academic Press (1980).
  • Netanyahu, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1”, Archive for Rational Mechanics and Analysis 32(2) (1969) : 100–112.
  • Tan, D.L., “Coefficient estimates for bi-univalent functions”, Chinese Annals of Mathematics Series A 5(5) (1984) : 559–568.
  • Brannan, D., Taha, T.S., “On some classes of bi-univalent functions”, Proceedings of the International Conference on Mathematical Analysis and its Applications. Kuwait, (1985) : 53–60.
  • Aktaş, İ., Yılmaz, N., “Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions”, Konuralp Journal of Mathematics 10(1) (2022) : 138–148.
  • Alamoush, A.G., “Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials”, Acta Universitatis Apulensis: Mathematics-Informatics 60 (2019) : 53–59.
  • Alamoush, A.G., “On a subclass of bi-univalent functions associated to Horadam polynomials”, International Journal of Open Problems in Complex Analysis 12(1) (2020) : 58–65.
  • Amourah, A., Al-Hawary, T., Frasin, B.A., “Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iß”, Afrika Mathematika 32(5) (2021) : 1059–1066.
  • Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions”, Gulf Journal of Mathematics 5(3) (2017) : 34–40.
  • Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of bi-Bazilevič function”, TWMS Journal of Applied and Engineering Mathematics 10(1) (2020) : 251–258.
  • Bulut, S., Magesh, N., Balaji, V.K., “Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials”, Journal of Classical Analysis 11(1) (2017) : 83–89.
  • Çağlar, M., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, Comptes Rendus de l’Acad´emie Bulgare des Sciences 72(12) (2019) : 1608–1615.
  • Kamali, M., Çağlar, M., Deniz, E., Turabaev, M., “Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials”, Turkish Journal of Mathematics 45(3) (2021) : 1195–1208.
  • Srivastava, H.M., Altınkaya, Ş., Yalçın, S., “Certain subclasses of bi-univalent functions associated with the Horadam polynomials”, Iranian Journal of Science and Technology, Transactions A: Science 43(4) (2019) : 1873–1879.
  • Srivastava, H.M., Murugusundaramoorthy, G., Vijaya, K., “Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator”, Journal of Classical Analysis 2(2) (2013) : 167–181.
  • Swamy, S.R., Sailaja, Y., “Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions”, International Journal of Mathematics Trends and Technology 66(8) (2020) : 131–138.
  • Wanas, A.K., Alina, A.L., “Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions”, Journal of Physics: Conference Series, IOP Publishing 1294(3) (2019).
  • Miller, S.S., Mocanu, P.T., “Differential Subordinations: Theory and Applications”, CRC Press (2000).
  • Koshy, T., “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Incorparation (2001).
  • Panwar, Y.K., Singh, M., “Generalized bivariate Fibonacci-like polynomials”, International Journal of Pure Mathematics 1 (2014) : 8–13.
  • Altınkaya, Ş., Yalçın, S., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, arXiv : 1605.08224v2 (2017).
  • Bulut, S., Magesh, N., Abirami, C., “A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials”, Journal of Fractional Calculus and Applications 8(2) (2017) : 32–39.
  • Murugusundaramoorthy, G., Vijaya, K., Güney, H.Ö., “Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator”, Tbilisi Mathematical Journal 11(2) (2018) : 153–166.
  • Patil, A.B., Shaba, T.G., “On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions”, Balkan Society of Geometers, Geometry Balkan Press, Applied Sciences 23 (2021) : 109–117.
  • Aouf, M.K., Mostafa, A.O., El-Morsy, R.E., “Coefficient bounds for general class of bi-univalent functions of complex order”, Electronic Journal of Mathematical Analysis and Applications 8(2) (2020) : 251–260.
  • Abirami, C., Magesh, N., Yamini, J., “Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials”, Abstract and Applied Analysis (2020) : 7391058.
  • Güney, H.Ö., Murugusundaramoorthy, G., Vijaya, K., “Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials”, Journal of Complex Analysis (2017) : 4150210
  • Magesh, N., Bulut, S., “Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions”, Afrika Mathematika 29 (2018) : 203–209.
  • Al-Shbeil, I., Wanas, A.K., AlAqad, H., Cătaş, A., Alohali, H., “Applications of Horadam Polynomials for Bazilevič and λ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions”, Symmetry 16 (2024) : 218.
  • Almalki, Y., Wanas, A.K., Shaba, T.G., Lupaş, A.A., Abdalla, M., “Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials”, Axioms 12(11) (2023) : 1018.
  • Wanas, A.K., “Upper Bound to Second Hankel Determinant for a family of Bi-Univalent Functions”, Boletim da Sociedade Paranaense de Matematica 41 (2023) : 1–8.
  • Güney, H.Ö., Murugusundaramoorthy, G., Sokøł J., “Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers”, Acta Universitatis Sapientiae, Mathematica 10(1) (2018) : 70–84.
  • Deniz, E., “Certain subclasses of bi-univalent functions satisfying subordinate conditions”, Journal of Classical Analysis 2(1) (2013) : 49–60.
  • Murugusundaramoorthy, G., Kaliappan, V., “Certain subclasses of analytic functions associated with generalized telephone numbers”, Symmetry 14 (5) (2022) : 1053.
  • Mustafa, N., Murugusundaramoorthy, G., “Second Hankel determinant for Mocanu type bi-starlike functionsrelated to shell-shaped region”, Turkish Journal of Mathematics 45(3) (2021) : 1270–1286.
  • Srivastava, H.M., Murugusundaramoorthy, G., Bulboaca, T., “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(4) (2022) : 145.
  • Srivastava, H.M., Sabir, P.O., Abdullah K.I., Mohammed N.H., Chorfi N., Mohammed P.O., “A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions”, AIMS Mathematics 8(12) (2023) : 29975–29994.
  • Srivastava, H.M., Wanas, A.K., Güney, H.Ö., “New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ-Pseudo-Starlike Functions”, Iranian Journal of Science and Technology, Transactions A: Science 45 (2021) : 1799–1804.
  • Srivastava, H.M., Sabir, P.O., Eker, S.S., Wanas, A.K., Mohammed, P.O., Chorfi, N., Baleanu, D., “Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds”, Journal of Inequalities and Applications 2024(1) (2024) : 47.
  • Srivastava, H.M., Hussain, S., Ahmad, I., Shah, S.G.A., “Coefficient bounds for analytic and bi-univalent functions associated with some conic domains”, Journal of Nonlinear and Convex Analysis 23(4) (2022) : 741–753.
  • Sabir, P.O., Srivastava, H.M., Atshan, W.G., Mohammed, P.O., Chorfi, N., Vivas-Cortez, M., “A Family of Holomorphic and m-Fold Symmetric Bi-Univalent Functions Endowed with Coefficient Estimate Problems”, Mathematics 11 (2023) : 3970.
  • Srivastava, H.M., Wanas, A.K., Srivastava, R., “Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials”, Symmetry 13(2021) : 1230.
  • Pommerenke, C., “Univalent functions”, Vandenhoeck & Ruprecht, Göttingen, Germany (1975).

Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial

Year 2024, , 71 - 84, 30.08.2024
https://doi.org/10.30931/jetas.1475271

Abstract

In this article, using the definition of generalized bivariate Fibonacci-like polynomials that include Horadam and Chebyshev polynomials a novel subclass of bi-univalent functions are introduced. Then, some bounds are determined for the initial Taylor-Maclaurin coefficients of the functions belonging to this new subclass. Further, the well-known Fekete-Szeg\"{o} problem is discussed for the defined subclass. Finally, certain remarks and corollaries are indicated for the some special values of variables.

References

  • Duren, P.L., “Univalent Functions In: Grundlehren der Mathematischen Wissenschaften”, Springer-Verlag (1983).
  • Fekete, M., Szegö, G., “Eine bemerkung über ungerade schlichte funktionen”, Journal of London Mathematical Society 1(2) (1933) : 85–89.
  • Zaprawa, P., “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bulletin of the Belgian Mathematical Society-Simon Stevin 21(1) (2014) : 169–178.
  • Srivastava, H.M., Mishra, A.K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters 23 (2010) : 1188–1192.
  • Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society 18 (1967) : 63–68.
  • Brannan, D., Clunie, J., “Aspects of contemporary complex analysis”, Academic Press (1980).
  • Netanyahu, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1”, Archive for Rational Mechanics and Analysis 32(2) (1969) : 100–112.
  • Tan, D.L., “Coefficient estimates for bi-univalent functions”, Chinese Annals of Mathematics Series A 5(5) (1984) : 559–568.
  • Brannan, D., Taha, T.S., “On some classes of bi-univalent functions”, Proceedings of the International Conference on Mathematical Analysis and its Applications. Kuwait, (1985) : 53–60.
  • Aktaş, İ., Yılmaz, N., “Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions”, Konuralp Journal of Mathematics 10(1) (2022) : 138–148.
  • Alamoush, A.G., “Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials”, Acta Universitatis Apulensis: Mathematics-Informatics 60 (2019) : 53–59.
  • Alamoush, A.G., “On a subclass of bi-univalent functions associated to Horadam polynomials”, International Journal of Open Problems in Complex Analysis 12(1) (2020) : 58–65.
  • Amourah, A., Al-Hawary, T., Frasin, B.A., “Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iß”, Afrika Mathematika 32(5) (2021) : 1059–1066.
  • Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions”, Gulf Journal of Mathematics 5(3) (2017) : 34–40.
  • Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of bi-Bazilevič function”, TWMS Journal of Applied and Engineering Mathematics 10(1) (2020) : 251–258.
  • Bulut, S., Magesh, N., Balaji, V.K., “Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials”, Journal of Classical Analysis 11(1) (2017) : 83–89.
  • Çağlar, M., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, Comptes Rendus de l’Acad´emie Bulgare des Sciences 72(12) (2019) : 1608–1615.
  • Kamali, M., Çağlar, M., Deniz, E., Turabaev, M., “Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials”, Turkish Journal of Mathematics 45(3) (2021) : 1195–1208.
  • Srivastava, H.M., Altınkaya, Ş., Yalçın, S., “Certain subclasses of bi-univalent functions associated with the Horadam polynomials”, Iranian Journal of Science and Technology, Transactions A: Science 43(4) (2019) : 1873–1879.
  • Srivastava, H.M., Murugusundaramoorthy, G., Vijaya, K., “Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator”, Journal of Classical Analysis 2(2) (2013) : 167–181.
  • Swamy, S.R., Sailaja, Y., “Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions”, International Journal of Mathematics Trends and Technology 66(8) (2020) : 131–138.
  • Wanas, A.K., Alina, A.L., “Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions”, Journal of Physics: Conference Series, IOP Publishing 1294(3) (2019).
  • Miller, S.S., Mocanu, P.T., “Differential Subordinations: Theory and Applications”, CRC Press (2000).
  • Koshy, T., “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Incorparation (2001).
  • Panwar, Y.K., Singh, M., “Generalized bivariate Fibonacci-like polynomials”, International Journal of Pure Mathematics 1 (2014) : 8–13.
  • Altınkaya, Ş., Yalçın, S., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, arXiv : 1605.08224v2 (2017).
  • Bulut, S., Magesh, N., Abirami, C., “A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials”, Journal of Fractional Calculus and Applications 8(2) (2017) : 32–39.
  • Murugusundaramoorthy, G., Vijaya, K., Güney, H.Ö., “Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator”, Tbilisi Mathematical Journal 11(2) (2018) : 153–166.
  • Patil, A.B., Shaba, T.G., “On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions”, Balkan Society of Geometers, Geometry Balkan Press, Applied Sciences 23 (2021) : 109–117.
  • Aouf, M.K., Mostafa, A.O., El-Morsy, R.E., “Coefficient bounds for general class of bi-univalent functions of complex order”, Electronic Journal of Mathematical Analysis and Applications 8(2) (2020) : 251–260.
  • Abirami, C., Magesh, N., Yamini, J., “Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials”, Abstract and Applied Analysis (2020) : 7391058.
  • Güney, H.Ö., Murugusundaramoorthy, G., Vijaya, K., “Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials”, Journal of Complex Analysis (2017) : 4150210
  • Magesh, N., Bulut, S., “Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions”, Afrika Mathematika 29 (2018) : 203–209.
  • Al-Shbeil, I., Wanas, A.K., AlAqad, H., Cătaş, A., Alohali, H., “Applications of Horadam Polynomials for Bazilevič and λ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions”, Symmetry 16 (2024) : 218.
  • Almalki, Y., Wanas, A.K., Shaba, T.G., Lupaş, A.A., Abdalla, M., “Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials”, Axioms 12(11) (2023) : 1018.
  • Wanas, A.K., “Upper Bound to Second Hankel Determinant for a family of Bi-Univalent Functions”, Boletim da Sociedade Paranaense de Matematica 41 (2023) : 1–8.
  • Güney, H.Ö., Murugusundaramoorthy, G., Sokøł J., “Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers”, Acta Universitatis Sapientiae, Mathematica 10(1) (2018) : 70–84.
  • Deniz, E., “Certain subclasses of bi-univalent functions satisfying subordinate conditions”, Journal of Classical Analysis 2(1) (2013) : 49–60.
  • Murugusundaramoorthy, G., Kaliappan, V., “Certain subclasses of analytic functions associated with generalized telephone numbers”, Symmetry 14 (5) (2022) : 1053.
  • Mustafa, N., Murugusundaramoorthy, G., “Second Hankel determinant for Mocanu type bi-starlike functionsrelated to shell-shaped region”, Turkish Journal of Mathematics 45(3) (2021) : 1270–1286.
  • Srivastava, H.M., Murugusundaramoorthy, G., Bulboaca, T., “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(4) (2022) : 145.
  • Srivastava, H.M., Sabir, P.O., Abdullah K.I., Mohammed N.H., Chorfi N., Mohammed P.O., “A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions”, AIMS Mathematics 8(12) (2023) : 29975–29994.
  • Srivastava, H.M., Wanas, A.K., Güney, H.Ö., “New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ-Pseudo-Starlike Functions”, Iranian Journal of Science and Technology, Transactions A: Science 45 (2021) : 1799–1804.
  • Srivastava, H.M., Sabir, P.O., Eker, S.S., Wanas, A.K., Mohammed, P.O., Chorfi, N., Baleanu, D., “Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds”, Journal of Inequalities and Applications 2024(1) (2024) : 47.
  • Srivastava, H.M., Hussain, S., Ahmad, I., Shah, S.G.A., “Coefficient bounds for analytic and bi-univalent functions associated with some conic domains”, Journal of Nonlinear and Convex Analysis 23(4) (2022) : 741–753.
  • Sabir, P.O., Srivastava, H.M., Atshan, W.G., Mohammed, P.O., Chorfi, N., Vivas-Cortez, M., “A Family of Holomorphic and m-Fold Symmetric Bi-Univalent Functions Endowed with Coefficient Estimate Problems”, Mathematics 11 (2023) : 3970.
  • Srivastava, H.M., Wanas, A.K., Srivastava, R., “Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials”, Symmetry 13(2021) : 1230.
  • Pommerenke, C., “Univalent functions”, Vandenhoeck & Ruprecht, Göttingen, Germany (1975).
There are 48 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Article
Authors

Hasan Hüseyin Güleç 0000-0001-8033-6273

İbrahim Aktaş 0000-0003-4570-4485

Early Pub Date August 29, 2024
Publication Date August 30, 2024
Submission Date April 29, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Güleç, H. H., & Aktaş, İ. (2024). Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial. Journal of Engineering Technology and Applied Sciences, 9(2), 71-84. https://doi.org/10.30931/jetas.1475271
AMA Güleç HH, Aktaş İ. Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial. JETAS. August 2024;9(2):71-84. doi:10.30931/jetas.1475271
Chicago Güleç, Hasan Hüseyin, and İbrahim Aktaş. “Coefficient Estimate Problems For A New Subclass of Bi-Univalent Functions Linked With the Generalized Bivariate Fibonacci-Like Polynomial”. Journal of Engineering Technology and Applied Sciences 9, no. 2 (August 2024): 71-84. https://doi.org/10.30931/jetas.1475271.
EndNote Güleç HH, Aktaş İ (August 1, 2024) Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial. Journal of Engineering Technology and Applied Sciences 9 2 71–84.
IEEE H. H. Güleç and İ. Aktaş, “Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial”, JETAS, vol. 9, no. 2, pp. 71–84, 2024, doi: 10.30931/jetas.1475271.
ISNAD Güleç, Hasan Hüseyin - Aktaş, İbrahim. “Coefficient Estimate Problems For A New Subclass of Bi-Univalent Functions Linked With the Generalized Bivariate Fibonacci-Like Polynomial”. Journal of Engineering Technology and Applied Sciences 9/2 (August 2024), 71-84. https://doi.org/10.30931/jetas.1475271.
JAMA Güleç HH, Aktaş İ. Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial. JETAS. 2024;9:71–84.
MLA Güleç, Hasan Hüseyin and İbrahim Aktaş. “Coefficient Estimate Problems For A New Subclass of Bi-Univalent Functions Linked With the Generalized Bivariate Fibonacci-Like Polynomial”. Journal of Engineering Technology and Applied Sciences, vol. 9, no. 2, 2024, pp. 71-84, doi:10.30931/jetas.1475271.
Vancouver Güleç HH, Aktaş İ. Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial. JETAS. 2024;9(2):71-84.